
Buy the printed version of this book at http://www.titan-books.com

Buy the printed version of this book at http://www.titan-books.com

About the Series

Each of the books in this series is a server-specific companion to the third edition of Richard
Monson-Haefel's best-selling and award-winning Enterprise JavaBeans (O'Reilly 2001),

available at http://www.titan-books.com/ and at all major retail outlets. It guides the reader
step by step through the exercises called out in that work, explains how to build and deploy

working solutions in a particular application server, and provides useful hints, tips, and warnings.

These workbooks are published by Titan Books in the context of a friendly agreement with
O'Reilly and Associates, the publishers of Enterprise JavaBeans, to provide serious developers

with the best possible foundation for success in EJB development on their chosen platforms.

Series Titles Available

WebLogic™ Server 6.1 Workbook for Enterprise JavaBeans™ 3rd Edition

WebSphere™ 4.0 AEs Workbook for Enterprise JavaBeans™ 3rd Edition

J2EE™ 1.3 SDK Workbook for Enterprise JavaBeans™ 3rd Edition

http://www.titan-books.com/
http://www.titan-books.com/

Buy the printed version of this book at http://www.titan-books.com

WebLogic™ Server 6.1 Workbook
for

Enterprise JavaBeans™
3rd Edition

Greg Nyberg

Minneapolis

Buy the printed version of this book at http://www.titan-books.com

WebLogic Server 6.1 Workbook for Enterprise JavaBeans, 3rd Edition, by Greg Nyberg

Published by Titan Books, Minneapolis, Minnesota.

Series Editor: Brian Christeson

Companion volume to Enterprise JavaBeans, 3rd Edition, by Richard Monson-Haefel, published
by O'Reilly & Associates, Inc., 2001, available at http://www.titan-books.com/.

Copyright © 2001 Titan Books, Inc. All rights reserved.

Printed in the United States of America by Fidlar Doubleday, Inc.

Printing History:

October 2001 First Edition

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, other countries, or both. Java and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both. BEA and WebLogic are trademarks or
registered tradmarks of BEA Systems, Inc. in the United States, other countries, or both. Other
company, product, and service names may be trademarks or service marks of others.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN 1-931822-46-8

http://www.titan-books.com/

Buy the printed version of this book at http://www.titan-books.com

for Abby, Matthew, and their Mommy

vii

Table of Contents

Table of Figures.. xiii

Preface... xvii
Contents of This Book... xvii

On-Line Resources... xviii

Conventions Used in This Book..xix

Acknowledgements..xx

Server Installation and Configuration...1
Installing WebLogic Server Software .. 1

Installing on NT/Win2K Machines ...1

Installing on SunOS Machines ... 5

Final Installation Steps... 7

Enabling EJB 2.0 Capability in WebLogic..8

Verifying Installation using WebLogic Examples ..9

Reviewing the Examples Domain... 9

Booting the Examples Domain... 10

Opening the WebLogic Management Console .. 11

Changing the Logging Severity Threshold ..12

Configuring the JDBC Connection Pools ..13

Building and Deploying the EJB20 Examples ..16

Testing the EJB20 Examples...19

Building the Workbook Database.. 21

Option #1 – Build Empty Database, Add Tables During Exercises..................................... 22

Option #2 – Build Empty Database, Create All Tables at Start... 27

Option #3 – Download Complete Cloudscape Database... 30

Configuring EJBBook Domain for EJB Exercises ..30

Creating an Empty EJBBook Domain.. 30

Configuring EJBBook Domain ... 32

Configuring TitanApp Application in EJBBook Domain... 39

Exercise Code Setup and Configuration ..43

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

viii Buy the printed version of this book at http://www.titan-books.com

Exercises for Chapter 4...47
Exercise 4.1: A Simple Entity Bean ..48

Download and Build the Example Programs ... 48

Create the Required Database Objects... 49

Examine the WebLogic-Specific Files/Components.. 49

Deploy the EJB Components to WebLogic .. 53

Examine and Run the Client Applications ... 56

Examine and Run the Client JSP Pages ... 59

Exercise 4.2: A Simple Session Bean ... 61

Download and Build the Example Programs ..61

Create the Required Database Objects..61

Examine the WebLogic-Specific Files/Components...61

Deploy the EJB Components to WebLogic .. 63

Examine and Run the Client Applications ... 64

Examine and Run the Client JSP Pages ... 66

Exercises for Chapter 5...67
Exercise 5.1: The Remote Component Interfaces...68

Download and Build the Example Programs ... 68

Create the Required Database Objects... 68

Examine the WebLogic-Specific Files/Components.. 68

Deploy the EJB Components to WebLogic .. 68

Examine and Run the Client Applications ... 68

Examine and Run the Client JSP Pages ... 69

Exercise 5.2: The EJBObject, Handle, and Primary Key.....................................70

Download and Build the Example Programs ... 70

Create the Required Database Objects... 70

Examine the WebLogic-Specific Files/Components.. 70

Deploy the EJB Components to WebLogic .. 70

Examine and Run the Client Applications ... 70

Examine and Run the Client JSP Pages ... 72

Exercise 5.3: The Local Component Interfaces .. 73

Download and Build the Example Programs ... 73

Create the Required Database Objects... 73

Examine the Standard EJB Descriptor File ... 73

Examine the WebLogic-Specific Files/Components.. 74

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com ix

Deploy the EJB Components to WebLogic ...75

Examine and Run the Client Applications ..75

Examine and Run the Client JSP Pages ... 76

Exercises for Chapter 6... 77
Exercise 6.1: Basic Persistence in CMP 2.0 .. 78

Download and Build the Example Programs ... 78

Create the Required Database Objects... 78

Examine the Standard EJB Descriptor File ... 78

Examine the WebLogic-Specific Files/Components.. 79

Deploy the EJB Components to WebLogic ..80

Examine and Run the Client Applications ...80

Examine and Run the Client JSP Pages ... 82

Exercise 6.2: Dependent Value Classes in CMP 2.0..83

Download and Build the Example Programs ... 83

Create the Required Database Objects... 85

Examine the Standard EJB Descriptor File ... 85

Examine the WebLogic-Specific Files/Components.. 85

Deploy the EJB Components to WebLogic .. 85

Examine and Run the Client Applications ... 85

Examine and Run the Client JSP Pages ... 86

Exercise 6.3: A Simple Relationship in CMP 2.0 ..88

Download and Build the Example Programs ...88

Create the Required Database Objects... 92

Examine the Standard EJB Descriptor File ... 94

Examine the WebLogic-Specific Files/Components.. 95

Deploy the EJB Components to WebLogic .. 97

Examine and Run the Client Applications ... 97

Examine and Run the Client JSP Pages ... 99

Exercises for Chapter 7 ... 101
Exercise 7.1: Entity Relationships in CMP 2.0: Part 1....................................... 102

Download and Build the Example Programs ... 102

Create the Required Database Objects... 103

Examine the Standard EJB Descriptor File ... 104

Examine the WebLogic-Specific Files/Components.. 108

Deploy the EJB Components to WebLogic ...110

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

x Buy the printed version of this book at http://www.titan-books.com

Examine and Run the Client JSP Pages ..110

Exercise 7.2: Entity Relationships in CMP 2.0: Part 2116

Download and Build the Example Programs .. 116

Create the Required Database Objects.. 116

Examine the Standard EJB Descriptor File .. 117

Examine the WebLogic-Specific Files/Components...122

Deploy the EJB Components to WebLogic ...126

Examine and Run the Client JSP Pages ..126

Optional Additional Tasks ...135

Exercise 7.3: Cascade Deletes in CMP 2.0 .. 136

Download and Build the Example Programs ..136

Create the Required Database Objects..136

Examine the Standard EJB Descriptor File ..136

Examine the WebLogic-Specific Files/Components...137

Deploy the EJB Components to WebLogic ...137

Examine and Run the Client JSP Pages ..137

Exercises for Chapter 8... 139
Exercise 8.1: Simple EJB QL Statements ... 140

Download and Build the Example Programs ... 140

Create the Required Database Objects... 140

Examine the Standard EJB Descriptor File ... 140

Examine the WebLogic-Specific Files/Components...147

Deploy the EJB Components to WebLogic ...147

Examine and Run the Client JSP Pages ..147

Exercise 8.2: Complex EJB QL Statements .. 152

Download and Build the Example Programs ..152

Create the Required Database Objects..152

Examine the Standard EJB Descriptor File ..152

Examine the WebLogic-Specific Files/Components... 157

Deploy the EJB Components to WebLogic ... 157

Examine and Run the Client JSP Pages ..158

Exercise for Chapter 10... 163
Exercise 10.1: A BMP Entity Bean.. 164

Download and Build the Example Programs ..164

Create the Required Database Objects..164

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com xi

Examine the Standard EJB Descriptor File ..165

Examine the WebLogic-Specific Files/Components...167

Deploy the EJB Components to WebLogic ...167

Examine and Run the Client Applications ... 168

Examine and Run the Client JSP Pages ..170

Exercises for Chapter 12 ..171
Exercise 12.1: A Stateless Session Bean ..172

Download and Build the Example Programs ..172

Create the Required Database Objects..173

Examine the Standard EJB Descriptor File ..174

Examine the WebLogic-Specific Files/Components... 175

Deploy the EJB Components to WebLogic ...176

Examine and Run the Client Applications ..176

Examine and Run the Client JSP Pages ..178

Exercise 12.2: A Stateful Session Bean..179

Download and Build the Example Programs ..179

Create the Required Database Objects... 182

Examine the Standard EJB Descriptor File ..185

Examine the WebLogic-Specific Files/Components... 191

Deploy the EJB Components to WebLogic ...195

Examine and Run the Client Applications ..196

Examine and Run the Client JSP Pages ...200

Exercises for Chapter 13 ...201
Exercise 13.1: JMS as a Resource...202

Download and Build the Example Programs ...202

Configure the Required JMS Components ..203

Examine the Standard EJB Descriptor File ... 207

Examine the WebLogic-Specific Files/Components..208

Deploy the EJB Components to WebLogic ..208

Examine and Run the Client Applications ...209

Examine and Run the Client JSP Pages ..212

Exercise 13.2: The Message-Driven Bean... 213

Download and Build the Example Programs ..214

Configure the Required JMS Components ...216

Examine the Standard EJB Descriptor File ... 222

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

xii Buy the printed version of this book at http://www.titan-books.com

Examine the WebLogic-Specific Files/Components.. 224

Deploy the EJB Components to WebLogic .. 226

Examine and Run the Client Applications ... 226

Examine and Run the Client JSP Pages ... 232

xiii

Table of Figures

Figure 1: Choosing the installation set ... 2

Figure 2: Choosing a home directory ... 2

Figure 3: Choosing a product directory ... 3

Figure 4: Configuring the default server.. 3

Figure 5: Setting your password... 4

Figure 6: Entering your username and password... 11

Figure 7: WebLogic's examples domain main home page..12

Figure 8: Reviewing the server configuration...13

Figure 9: Configuring JDBC connection pools ...14

Figure 10: Configuring the connection pools for an alternate driver/database...............................15

Figure 11:Verifying ejb20 example bean deployment...17

Figure 12: Configuring a new bean..18

Figure 13: Verifying that the bean is properly "targeted" ...19

Figure 14: Cloudview splash screen ... 23

Figure 15: Creating a new Cloudscape database .. 23

Figure 16: Main screen for new Cloudscape database ... 24

Figure 17: Creating tables using Cloudview SQL window ... 28

Figure 18: Verifying all tables were created in database ... 29

Figure 19: Creating a new domain ..31

Figure 20: Verifying the ejbbook domain was created ...31

Figure 21: Main home page for new ejbbook domain.. 32

Figure 22: Starting to create a new server ... 33

Figure 23: Configuring the new server... 33

Figure 24: Configuring a connection pool for ejbbook.. 37

Figure 25: Associating a data source with the connection pool .. 38

Figure 26: Finding the default web application... 38

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

xiv Buy the printed version of this book at http://www.titan-books.com

Figure 27: Class loader heirarchy used for .ear files.. 40

Figure 28: Finding the titanapp application.. 43

Figure 29: Verifying the deployment of titanejb component .. 54

Figure 30: Verifying configuration of titanejb component.. 54

Figure 31: Verifying that titanejb is properly “targeted” ... 55

Figure 32:Viewing the JNDI tree for myserver.. 56

Figure 33:Link table used to implement Customer-Reservation relationship124

Figure 34: Initial relationships in Client_77b example... 130

Figure 35: Relationships after setCustomers operation on Reservation D.................................... 131

Figure 36: Initial relationships in Client_77c example .. 131

Figure 37: Relationships after removing cabins from Reservation A’s collection132

Figure 38: Reservation and Cabin beans after bean creation ..133

Figure 39: Set objects contain Cabin beans ..134

Figure 40: Relationships after setCabins calls on both Reservation beans134

Figure 41: Relationships after modifying Reservation B’s cabins ..135

Figure 42: Many-to-many relationships in ejbSelectAllForCustomer query.................................146

Figure 43: Beans and relationships created by Client_84a.jsp..150

Figure 44:CustomerHomeRemote binding in JNDI tree ...195

Figure 45:CustomerHomeLocal binding in JNDI tree ...195

Figure 46: Creating the Titan Topic Factory..204

Figure 47: Enabling User Transactions for Titan Topic Factory ...204

Figure 48: Creating the Titan JMS Store ... 205

Figure 49: Creating the Titan JMS Server ... 205

Figure 50: Creating the Ticket Topic..206

Figure 51: Monitoring the Titan JMS Server ... 210

Figure 52: Monitoring JMS Server Activity .. 211

Figure 53: Basic approach for message-driven bean example ...213

Figure 54: Preparing to createl a new Connection Factory ..217

Figure 55: Creating the Titan Queue Factory... 218

Figure 56: Enabling User Transactions for Titan Queue Factory ... 218

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com xv

Figure 57: Preparing to create new Queues ..219

Figure 58: Creating the Reservation Queue...220

Figure 59: Creating the Ticket Queue ...221

Figure 60: Monitoring destinations in Titan JMS Server ... 229

Figure 61: Monitoring destinations after running producer application231

xvii

Preface

This workbook is designed to be a companion for O’Reilly's Enterprise Java Beans, Third
Edition, by Richard Monson-Haefel, for users of BEA's WebLogic application server. It is one of a
series of vendor-specific workbooks Titan Books is publishing to accompany the latest edition of
that spectacularly best-selling work.

The goal of this workbook is to provide practical, step-by-step instructions for installing and
configuring the WebLogic Server product, and for deploying the example programs from
Enterprise JavaBeans in a WebLogic environment.

This workbook also discusses key WebLogic-specific requirements, best practices, and the use of
WebLogic-specific tools such as the WebLogic Administration Console. You will build web-based
versions of many of the example programs, gaining insight into the relationships between web
applications and EJB applications in the WebLogic Server product.

This book is based on the production release of the WebLogic Server 6.1 product and includes all
of the EJB 2.0 examples from the Enterprise JavaBeans book. All of the examples and techniques
demonstrated in this book work properly with the 6.1 GA release of WebLogic, but not with the
WebLogic 5.1, 6.0, or early 6.1 beta releases.

Contents of This Book

This workbook is divided into two kinds of sections:

♦ Server Installation and Configuration – The first section walks you through the process
of downloading, installing, and configuring the WebLogic 6.1 product, and building the
WebLogic “domain” and services required for the example programs. It also describes the
working area used to build the example programs and the process for downloading and
installing each exercise archive file.

♦ Exercises – These sections contain step-by-step instructions for downloading, building,
configuring, and deploying the example programs for each exercise called out in Enterprise
JavaBeans, Third Edition (which, for brevity, in this workbook will refer to as "the EJB
book"). The text also examines many of the source files, descriptors, and other components
used in each exercise to point out key WebLogic-specific issues and techniques.

Because WebLogic Server 6.1 is an EJB 2.0-compliant product, the EJB 1.1 exercises called out in
Enterprise JavaBeans are not included in this workbook.

The workbook text for each exercise will depend on the amount of new material introduced in the
exercise and the configuration tasks required for the example programs, but generally each
exercise will contain text describing the following activities:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

xviii Buy the printed version of this book at http://www.titan-books.com

♦ Downloading and building the example code

♦ Configuring database tables or other system services

♦ Examining the standard EJB descriptor file, ejb-jar.xml

♦ Examining the WebLogic-specific descriptor files

♦ Deploying the EJB components to WebLogic

♦ Examining and running the example programs

♦ Examining and running the example web-application components

The exercises are designed to be built and run in order. Every effort was made to eliminate
dependencies between the exercises by including all components for each exercise within each
exercise archive file, but occasional dependencies exist nevertheless. The workbook text will
highlight these dependencies when they occur and explain the prerequisites for each exercise.
You should configure and clear database tables according to the instructions in each exercise, to
avoid problems in subsequent exercises.

On-Line Resources

This workbook is designed for use with the EJB book and with downloadable example code, both
available from our web site:

http://www.titan-books.com/

The code and scripts are contained in the following archive files:

dbscripts.jar Contains scripts for starting the Cloudscape tools, Cloudview and
ij, and SQL scripts for building workbook database tables in
multiple RDBMS technologies. Extracted to a convenient work
directory.

bookdb.jar Pre-built Cloudscape database for workbook exercises. Extracted
to the Cloudscape data directory if Option #3 is chosen for
database configuration during setup.

titanapp_empty.jar Pre-built titanapp directory structure representing an “empty”
exploded enterprise archive (.ear) file. Extracted to applications
directory of new ejbbook domain.

work_ejbbook_win.jar Contains common scripts or files required in the work root
directory for NT/Win2K installations.

work_ejbbook_sol.jar Contains common scripts or files required in the work root
directory for SunOS installations.

http://www.titan-books.com/

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com xix

ex04_1.jar –
ex13_2.jar

Eighteen separate archive files containing code, build scripts, and
descriptor files for individual exercises. Extracted to the work root
directory to create separate ex##_# subdirectories.

everything.jar Single file containing all archive files, as a convenience for
downloading.

We will post errata at the download site, and any updates required to support specification or
product changes. You will also find links to many popular EJB-related sites on the internet.

BEA Systems maintains a significant web presence with sites devoted to partners, developers, and
product documentation. The following links will direct you to important areas in BEA’s site:

http://www.bea.com/index.shtml

BEA home page containing links to all areas of their site.

http://developer.bea.com/index.jsp

Developer home page, requires (free) registration for access to all areas.

http://edocs.bea.com/index.html

General e-docs documentation home page. Links to documentation for all BEA products.

http://edocs.bea.com/wls/docs61/index.html

WebLogic Server 6.1 e-docs documentation home page. The place to start looking for most
6.1-related information.

http://newsgroups.bea.com/cgi-bin/dnewsweb

Web-based interface for newsgroups covering all aspects of BEA technology. Also available in
NNTP format from newsgroups.bea.com. These are very active newsgroups monitored by
representatives from BEA engineering. Searching the newsgroup archives is a very good way
to find information not contained in the e-docs.

I hope you find this book useful in your study of Enterprise JavaBeans and WebLogic Server.
Comments, suggestions, and error reports on the text of this workbook or the contents of the
downloaded example code are welcome and appreciated. Please e-mail them to:

weblogic-workbook@yahoogroups.com

Conventions Used in This Book

Italics are used for:

♦ Filenames and pathnames

♦ Names of hosts, domains, applications

mailto:weblogic-workbook@yahoogroups.com

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

xx Buy the printed version of this book at http://www.titan-books.com

♦ URLs and email addresses

♦ New terms where they are defined

Boldface is used for:

♦ Emphasis

♦ Buttons, menu items, window and menu names, and other UI items you are asked to interact
with

Constant width is used for:

♦ Code examples and fragments

♦ Sample program output

♦ Class, variable, and method names, and Java keywords used within the text

♦ SQL commands, table names, and column names

♦ XML elements and tags

♦ Commands you are to type at a prompt

Constant width bold is used for emphasis in some code examples.

Constant width italic is used to indicate text that is replaceable. For example, in
BeanNamePK, you would replace BeanName with a specific bean name.

An Enterprise JavaBean consists of many parts; it’s not a single object, but a collection of objects
and interfaces. To refer to an Enterprise JavaBean as a whole, we use the name of its business
name in Roman type followed by "bean" or the acronym "EJB." For example, we will refer to the
Customer EJB when we want to talk about the enterprise bean in general. If we put the name in a
constant width font, we are referring explicitly to the bean’s class name, and usually to its remote
interface. Thus CustomerRemote is the remote interface that defines the business methods of
the Customer bean.

Acknowledgements

Thank you to everyone who helped with the writing of this workbook, directly or indirectly. I was
fortunate to be working with a consulting organization (Object Partners, Inc.) that supported me
during the development of this workbook, and for that I am very grateful. My editor Brian
Christeson helped to apply structure and polish to very rough piece of work, for which I thank
him. My technical reviewers and colleagues at Object Partners were invaluable in finding and
correcting errors in the example programs and workbook.

Thanks, Richard, for believing I could pull this off and giving me the opportunity to write my first
book. It has been a rewarding experience.

Finally, thanks to Meredith for putting up with the late nights and my single-mindedness during
this process, and for always supporting me in my pursuits.

1

Server Installation and Configuration

The EJB 2.0 examples from the O’Reilly book Enterprise JavaBeans 3rd Edition (referred to
hereafter as the “EJB book”) require the EJB 2.0-compliant version of the WebLogic Server
product, version 6.1. This chapter will describe the steps required to download, install, and
configure the WebLogic Server product to provide a platform for the subsequent exercises and
examples.

BEA provides a very complete set of installation, administration, and programming
documentation on their “edocs” web site, http://edocs.bea.com/, including limited search
capability. Throughout this workbook references will be made to the online documentation
including URLs where possible.

Installing WebLogic Server Software
BEA provides a downloadable evaluation version of their WebLogic Server product directly from
their download web site (http://commerce.bea.com/downloads/products.jsp). You will receive a
license valid for approximately 30 days to allow you to evaluate the product.

Download WebLogic Server version 6.1 for your platform. You may need to register with the site
if you have never done so. Be aware that the distribution archive is very large (75 MB).

Installing on NT/Win2K Machines

The Windows NT/Windows 2000 version is packaged as a self-extracting, self-installing
application. Run the install application, choose your language, and accept the license agreement
if any. The next dialog allows you to install only the server product, or the server product and the
canned examples from BEA. We want both, so click on Server with Examples and click on
Next.

http://edocs.bea.com/
http://commerce.bea.com/downloads/products.jsp

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

2 Buy the printed version of this book at http://www.titan-books.com

Figure 1: Choosing the installation set

The next dialog (Figure 2) asks you to select the BEA “home” directory for all BEA products,
including WebLogic Server 6.1 and the JDK 1.3.1 installation. The online documentation provides
guidelines for selecting a BEA home directory. The default for a typical NT/Win2K machine is
c:\bea.

Figure 2: Choosing a home directory

If you already have a BEA home directory, select Use Existing BEA Home and use the same
directory. The new version of the server product will be installed alongside any existing version in
the BEA home directory. Click on Next to continue.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 3

The next dialog asks you to choose the product installation directory. It should be the directory
below the BEA home directory, and is assumed in this workbook to be c:\bea\wlserver6.1 as
shown in Figure 3.

Figure 3: Choosing a product directory

WebLogic creates a series of “domains” during the installation, including an empty domain and
an examples domain containing many example components and applications. The concept of a
domain is described in detail in the online documentation and will be discussed briefly in the
section on configuring the domain you will use in exercises. The next dialog (Figure 4) allows you
to define the name of this empty domain (mydomain), the name of the default server (myserver)
and the default listen ports for normal and secure socket communication.

Figure 4: Configuring the default server

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

4 Buy the printed version of this book at http://www.titan-books.com

Leave all of these values as shown and click on Next to continue.

The next dialog allows you to configure the default WebLogic server instance as a service in
NT/Win2K. Select No and click on Next to continue.

In the next dialog (Figure 5), choose an easy-to-remember password. This password is stored in
encrypted form in a file in each domain directory. Because it is not possible to reset it or
otherwise recover if you forget the password, be sure you write it down. Many people use the
password “weblogic” on their local machines. Enter your chosen password twice and click on
Install to continue.

Figure 5: Setting your password

The installation process should now commence and take approximately 3-5 minutes.

The install process will create a directory structure under the BEA home directory similar to this:
C:\bea\
 jdk131\
 wlserver6.1\
 bin\
 config\
 ext\
 lib\
 samples\
 uninstaller\

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 5

The following is a brief description of the contents of each directory.

♦ jdk131 – Contains a full copy of the Java 1.3.1 SDK. All of the build scripts provided by BEA
and those provided as examples for this workbook assume this directory is present.

♦ wlserver6.1\bin – Because WebLogic is actually a Java application run via a standard JVM,
the only files in the \bin directory are DLLs and a few scripts.

♦ wlserver6.1\config – This is a root directory for all of the “domains” defined on this machine.
Under this directory you should have an examples directory, a mydomain directory, and a
petstore directory. Each of these directories represents a separate bootable domain installed
on this machine. These individual domain directories are called domain root directories
throughout this workbook.

♦ wlserver6.1\ext – Extensions directory, not important for our purposes.

♦ wlserver6.1\lib – Directory containing all runtime library .jar files used by WebLogic. The
most important file in this directory is the weblogic.jar file which must be in the Java
classpath when WebLogic server is booted.

♦ wlserver6.1\samples – Contains source code and build scripts for the canned examples
provided with the product.

♦ wlserver6.1\uninstaller – Self-explanatory, not important for our purposes.

Proceed to the “Final Installation Steps” section to verify your license file and complete the
installation process.

Installing on SunOS Machines

Download the weblogic610_sol.bin installation file from the BEA web site and place it somewhere
convenient on the SunOS machine. It is best to use a weblogic user account rather than installing
and running the product as root. You may need the system administrator to create an /opt/bea
directory owned by the weblogic user account prior to beginning the installation, since that is the
default location for the BEA Home directory.

Console mode installation is available on UNIX platforms. Additional information is available in
the online documentation (http://e-docs.bea.com/wls/docs61/install/instcon.html). Begin the
installation using:

sh weblogic610_sol.bin –i console

Choose your Locale in the first text-based menu that appears. Press <ENTER> to page through
any license agreement information or notes displayed by the installation program, then agree to
the terms of the license to continue.

http://e-docs.bea.com/wls/docs61/install/instcon.html

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

6 Buy the printed version of this book at http://www.titan-books.com

Next, you will be asked to specify the type of installation:
Choose Install Set

Please Choose the Install Set to be installed by this installer.
 ->1- Server and Examples
 2- Server Only
 3- Customize...
ENTER THE NUMBER FOR THE INSTALL SET, OR <ENTER> TO ACCEPT THE
DEFAULT
 : 1

Choose Server and Examples to include the examples domain and all sample code in the
installation, allowing you to configure and test the examples domain to test the installation.

The next menu will be:
Choose BEA Home Directory

 1- Create a New BEA Home
 2- Use Existing BEA Home
Enter a number: 1

Choose Use Existing BEA Home if you have a previous version of WebLogic 6.0 or any other
recent WebLogic product which created the BEA Home directory structure (WebLogic 5.1 did not
use this). Otherwise choose Create a New BEA Home.

If you select Use an Existing BEA Home, choose it (by number) from the displayed menu:
1- /opt/bea
Existing BEA Home: 1

Alternately, specify the new BEA Home directory if you chose to create a new one:
Specify a New BEA Home: /opt/bea

The next step is to choose the product directory. The workbook examples and documentation will
assume the product is installed in the /opt/bea/wlserver6.1 directory:

Choose Product Directory

 1- Modify Current Selection (/opt/bea/wlserver6.1)
 2- Use Current Selection (/opt/bea/wlserver6.1)
Enter a number: 2

When you are ready to continue, choose the Use Current Selection option to proceed to the
next step.

WebLogic creates a series of “domains” during the installation, including an empty domain and
an examples domain containing many example components and applications. The concept of a
domain is described in detail in the online documentation.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 7

The next menu allows you to define the name of this empty domain (mydomain), the name of the
default server (myserver) and the default ports for normal and secure socket communication:

Default Server Configuration

 1- Modify WebLogic Admin Domain Name (mydomain)
 2- Modify Server Name (myserver)
 3- Modify Listen Port (7001)
 4- Modify Secure (SSL) Listen Port (7002)
 5- Done Configuration
Enter a number: 5

Accept the defaults and continue.

The next step is to set the system password. This password is stored in encrypted form in a file in
each domain root directory. Many people use the password “weblogic” on development
machines. Enter your chosen password twice.

Create System Password

Password:
Verify Password:

 Warning: Because it is not possible to reset or otherwise recover the system password if you
forget it, be sure to write it down!

The installation process should now commence and take approximately 3-5 minutes.

When the process is complete you should see the following message:
Install Complete

Congratulations. 'WebLogic Server' has been successfully installed
to:
 /opt/bea/wlserver6.1
PRESS <ENTER> TO EXIT THE INSTALLER:

That’s it. Press <ENTER> and proceed to the final installation steps, below.

Final Installation Steps

Examine the contents of the BEA home directory, \bea (NT/Win2K) or /opt/bea (SunOS)
assuming you followed the installation guidelines. If WebLogic 6.1 is the first BEA product
installed in this BEA home directory, the directory will contain a license.bea file created by the
installation process with your 30-day evaluation license for the WebLogic Server 6.1 product.
Examine the license.bea file and look for a <license-group> element for release 6.1:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

8 Buy the printed version of this book at http://www.titan-books.com

<license-group format="1.0" product="WebLogic Server" release="6.1">
 <license
 component="WebLogic"
 expiration="2001-12-25"
 ip="any"
 licensee="BEA Evaluation Customer"
 type="EVAL"
 units="5"
 signature="..."
 />
 ...
</license-group>

If your license.bea file includes a <license-group> element like this, you’re all set to go.

Unfortunately, if you previously installed WebLogic 6.0 or any other BEA product in this BEA
home directory, the WebLogic 6.1 evaluation license was not placed in the license.bea file. There
should be a new file in the directory called license_new.bea containing the WebLogic 6.1 license
information. You need to place this license information in the license.bea file using one of the
following techniques:

1. Edit the license_new.bea file, copy the entire WebLogic 6.1 <license-group> element to
the clipboard, and paste it in the license.bea file within the <bea-licenses> section.

2. Rename the old license.bea file to something else and rename license_new.bea to license.bea.

3. Use the UpdateLicense utility provided by BEA to merge the old and new license files. This
utility essentially performs the copy/paste outlined in the first option. Open a command
prompt or telnet window, navigate to the home directory, and run the UpdateLicense.cmd or
.sh script supplying the new license file as a command-line parameter:
C:\bea>UpdateLicense license_new.bea

The first option is the recommended one. You might as well get used to editing the license.bea
file, because if you continue to work with BEA products there will be many opportunities to edit
and merge license files as new products are installed and old licenses expire.

Celebrate! You are now ready to enable EJB 2.0 functionality and verify the installation with the
examples domain.

Enabling EJB 2.0 Capability in WebLogic
At the current time, the standard install of WebLogic does not, by default, enable the EJB 2.0
capability of the product. If you examine the contents of the wlserver6.1/lib directory, you may
or may not see a file called ejb20.jar. If this file is absent you will encounter runtime errors when
you try to deploy EJB 2.0 beans or use other EJB 2.0 features.

The ejb20.jar file is available for download from the standard WebLogic download site
(http://commerce.bea.com/downloads/products.jsp). In the WebLogic Server products section,

http://commerce.bea.com/downloads/products.jsp)

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 9

choose the EJB 2.0 Upgrade from the download page, download the file, and place it in the
wlserver6.1/lib directory. The presence of this file will enable EJB 2.0 capability in the product.

Verifying Installation using WebLogic Examples
The canned examples provided with WebLogic Server demonstrate a wide range of features and
capabilities of the product. They are also an excellent way to verify a product installation and
troubleshoot configuration problems, since BEA is normally willing to provide support to
evaluation users attempting to configure and run the examples.

Reviewing the Examples Domain

First, examine the contents of the examples domain root directory. Recall that each domain in
the installation is a separate directory under the wlserver6.1/config directory. The examples
domain root directory is therefore bea/wlserver6.1/config/examples, where you should see a set
of files and directories something like this:

NT/Win2K SunOS
applications\
clientclasses\
logs\
serverclasses\
xml\
ca.pem
config.xml
democert.pem
demokey.pem
fileRealm.properties
SerializedSystemIni.dat
setExamplesEnv.cmd
startExamplesServer.cmd

applications\
clientclasses\
logs\
serverclasses\
xml\
ca.pem
config.xml
democert.pem
demokey.pem
fileRealm.properties
SerializedSystemIni.dat
setExamplesEnv.sh
startExamplesServer.sh

Key files/directories beneath this domain root directory include:

♦ applications – This is a “magic” directory in WebLogic Server. Any web-application (.war)
files, EJB component (.jar) files, or enterprise-application (.ear) files placed in the
applications directory are automatically deployed by the server during boot. In addition,
components in this directory are automatically deployed and/or redeployed at runtime
should the file appear in the directory or have its timestamp change.

♦ config.xml – The mother of all configuration files, this XML file contains all of the
configuration information for all servers, clusters, resources, and applications defined in this
domain. It can be edited by hand while the server is not running if you know what you are
doing.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

10 Buy the printed version of this book at http://www.titan-books.com

♦ fileRealm.properties – File used by the default file-based security realm in WebLogic.
Contains users, groups, passwords (encrypted), and ACLs.

♦ SerializedSystemIni.dat – A mysterious but important file used in the encryption process for
the fileRealm.properties passwords. The trick is that whenever you create a new domain, you
must manually copy fileRealm.properties and SerializedSystemIni.dat to the new domain
root directory before attempting to boot the domain. If you do this, the system password will
be the same as the source domain you copied from. If you do not, there is no way to
determine the correct system password for the new domain or indeed to boot the domain to
add/modify user information.

♦ startExamplesServer.cmd or .sh – Script used to start the examples domain server process.

♦ setExamplesEnv.cmd or .sh – Script used to modify the current shell’s CLASSPATH to allow
the running of example client applications, etc.

Booting the Examples Domain

The first step is to boot the examples domain and check that the basic installation and
configuration was a success. To ensure that environment variables are controlled and consistent
and shortcut problems are avoided, this workbook will direct you to perform the majority of
server-related operations for the NT/Win2K platform using a Command Prompt window rather
than Start Menu items.

Booting the Examples Server – NT/Win2K:

1. Open a Command Prompt window

2. Change to \bea\wlserver6.1\config\examples directory

3. Execute the startExamplesServer.cmd script

4. Provide the system password when asked during the boot process.

5. Watch the output during the boot process. Because the logging severity threshold is set to
Error or higher, there will be very few messages unless there are errors.

 Tip: There are two ways to avoid Step 4 each time you boot:

♦ Create a small text file called password.ini in the domain root directory containing the system
password in clear text (with no newline).

♦ Add -Dweblogic.management.password=thepassword to the java command in the
start script, replacing thepassword with your system password.

Booting the Examples Server – SunOS:

1. Change to /opt/bea/wlserver6.1/config/examples directory

2. Execute the startExamplesServer.sh script

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 11

3. Provide the system password when asked during the boot process.

4. Watch the output during the boot process. Because the logging severity threshold is set to
Error or higher, there will be very few messages unless there are errors.

 Tip: There are two ways to avoid Step 3 each time you boot:

♦ Create a small text file called password.ini in the domain root directory containing the system
password in clear text (with no newline).

♦ Add -Dweblogic.management.password=thepassword to the java command in the
start script, replacing thepassword with your system password.

Opening the WebLogic Management Console

Assuming the server has booted without errors, it is time to connect to the domain using the
management console. Essentially the management console is nothing more than a web
application installed and deployed in the domain. You start the console by opening a browser
window and connecting to the /console web application. Assuming you’ve used the default listen
ports, the URL would be:

http://localhost:7001/console or http://servername:7001/console

The console is protected via Access Control Lists (ACLs), so an HTTP challenge window (Figure 6)
will pop up asking for the system username and password:

Figure 6: Entering your username and password

Enter the system username and password and click OK to continue. You should see the main
home page for the examples domain (Figure 7):

http://localhost:7001/console
http://servername:7001/console

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

12 Buy the printed version of this book at http://www.titan-books.com

Figure 7: WebLogic's examples domain main home page

 Tip: If you get lost in the console at any point, clicking on the little black house icon on the
top of the right pane should bring you back to this page. It can take 5-10 seconds to refresh
the navigation pane when you do this, so be patient.

A detailed walkthrough of everything available in the management console is beyond the scope of
this workbook. Our discussion will focus on the specific features necessary to configure, deploy,
and execute the examples from the EJB book (remember: "the EJB book" is our shorthand for
O'Reilly's Enterprise JavaBeans, 3rd Edition).

Changing the Logging Severity Threshold

The first step is to change the logging verbosity to include all messages of level Info or higher,
rather than just Error or higher. Click on the Servers folder to open it and click on the
examplesServer item within it to view the configuration details for the examplesServer.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 13

The right pane on the screen should look something like Figure 8:

Figure 8: Reviewing the server configuration

Click on the Logging tab to view details on the logging service for the examplesServer. Change
the severity threshold to Info and apply the changes. This logging change will be saved in the
configuration file (config.xml) and will cause informational messages to be displayed to the log
during the boot process, during domain configuration changes, and as a result of bean
deployments.

Configuring the JDBC Connection Pools

The next step is to configure the JDBC connection pools in the examples domain to use whichever
JDBC-compliant driver and database you have available. Click on the JDBC folder in the
Services section of the navigation pane on the left. The folder will open to reveal additional
subfolders. Click on the Connection Pools subfolder to see the pools that were pre-configured
during the installation process:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

14 Buy the printed version of this book at http://www.titan-books.com

Figure 9: Configuring JDBC connection pools

The installation process automatically configures the JDBC pools in the examples domain to use
the Cloudscape database and JDBC drivers. An evaluation version of the Cloudscape database
management system is included in your WebLogic distribution and can be used for the WebLogic
examples with no additional effort. If you choose to use the Cloudscape database, you may skip
the next section and proceed to “Building and Deploying the EJB 2.0 Examples.”

Configuring the JDBC pools for alternate JDBC drivers/databases:

1. Click on the demoPool in the list on the right side of the screen to display the configuration
details for this pool (Figure 10).

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 15

Figure 10: Configuring the connection pools for an alternate driver/database

2. Enter the URL, Driver Classname, properties, and password for the JDBC driver/database
you wish to use. See the list of example entries below or consult the online documentation for
details.

3. Apply the changes. The change may not take effect until the next reboot if there are already
active connections in the pool using the old parameters. Reboot to be safe.

Here is a list of example entries for common JDBC drivers:

WebLogic’s Oracle OCI Driver
URL: jdbc:weblogic:oracle
Driver: weblogic.jdbc.oci.Driver
Properties: user=<username>

server=<servername>
Password: <password for username>

DB/2 UDB JDBC Driver
URL: jdbc:db2:dbname (where dbname is database name)
Driver: COM.ibm.db2.jdbc.app.DB2Driver
Properties: user=<username>
Password: <password for username>

Note: The db2java.zip file must be included in the server classpath,
requiring a minor change to the startExamplesServer script.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

16 Buy the printed version of this book at http://www.titan-books.com

Sun’s JDBC-ODBC Bridge Driver
URL: jdbc:odbc:dsname (where dsname is ODBC source name)
Driver: sun.jdbc.odbc.JdbcOdbcDriver
Properties: dummy=xxx (not used but can’t be blank)
Password: anything (not used but can’t be blank)

WebLogic’s SQL*Server Driver
URL: jdbc:weblogic:mssqlserver4:master@localhost:1433
Driver: weblogic.jdbc.mssqlserver4.Driver
Properties: sql7=true

user=sa
Password: <password for sa>

The WebLogic EJB 2.0 examples require a number of tables in the database to deploy and operate
properly. Because you will test just a single example program, ejb20/basic/containerManaged,
you need only create a single table in your chosen database technology:

CREATE TABLE ejbAccounts
(
 id varchar(15),
 bal float,
 type varchar(15)
);

Create this table in your database and proceed to the next section to build and deploy the EJB20
examples.

Building and Deploying the EJB20 Examples

The bea/wlserver6.1/samples/examples/ejb20 directory contains a number of example EJBs we
can use to test the functionality of the EJB 2.0 container and JDBC connections. In the first GA
version of WebLogic 6.1, at least, these EJB 2.0 examples were not pre-built and deployed to the
server by the installation process, probably because the plain-vanilla installation does not support
EJB 2.0 without the magic ejb20.jar file in the wlserver6.1/lib directory.

Building the EJB 2.0 examples:

1. Open a command prompt (or new telnet window if you're using SunOS)

2. Change to the /wlserver6.1/config/examples directory

3. Execute the setExamplesEnv script to set PATH and CLASSPATH variables

 SunOS users: Be sure to “source” the script using a command like:
../setExamplesEnv.sh

4. Change to the /wlserver6.1/samples/examples/ejb20/basic/containerManaged directory.
In this directory you will see a build.xml file used by the “ant” build process for the examples.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 17

5. Type ant all to compile and deploy all components in this example. You can also do one
step at a time by specifying ant targets individually (see the all target in the build.xml file to
see the list of individual targets).

6. If the process succeeds, a new ejb20_basic_containerManaged.jar file will be placed in the
magic applications directory in the examples domain.

7. Assuming auto-deployment is working, the new EJB should be sensed by the running copy of
WebLogic Server and deployed automatically.

8. Verify that the new ejb20_basic_containerManaged.jar was placed in the
config/examples/applications directory.

Next, use the management console to verify that the EJB was properly deployed by the server
automatically. Click on the EJB folder in the pane on the left side of the console a few times to
force it to refresh. You should see a list similar to the following:

Figure 11:Verifying ejb20 example bean deployment

The ejb_xxxxx beans are the basic EJB 1.1 examples that are pre-built and pre-deployed in the
examples domain. The new EJB 2.0 bean is the fifth item in the list above, the row starting with
“ejb20_basic_containerManaged,” and may or may not be in your list depending on the
somewhat capricious auto-deployment feature.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

18 Buy the printed version of this book at http://www.titan-books.com

If the new ejb20_basic_containerManaged bean does not show up on your list, click on the
Configure a new EJB.. link and fill out the form shown in Figure 12 with the data listed below.

Figure 12: Configuring a new bean

Data for the new EJB:
Name: ejb20_basic_containerManaged
URI: ejb20_basic_containerManaged.jar
Path (NT): c:/bea/wlserver6.1/config/examples/applications
Path (Sun): /opt/bea/wlserver6.1/config/examples/applications

Click on Create and the new EJB .jar file will be read in and deployed. You may need to click on
the EJB folder in the left navigation pane a few times to force it to show up properly in your
console display.

One final step to ensure the new EJB has deployed properly is to check that the component is
targeted for the examplesServer. Click on the ejb20_basic_containerManaged component
under the EJB folder in the left pane. You should see the detailed screen for the component.
Click on the Targets tab and you should see the following screen:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 19

Figure 13: Verifying that the bean is properly "targeted"

If the examplesServer is in the Available list instead of the Chosen list, the EJB has not been
targeted for the server and has not been properly deployed on the server. Pick examplesServer
in the left list, click on the right-pointing arrow to move it to the Chosen side, and click on
Apply to save the changes. The EJB should immediately deploy, and you should see messages in
the log indicating that it has deployed and has registered in JNDI with the name
ejb20-containerManaged-AccountHome:

<Info> <Management> <Configuration changes for domain saved to the
repository.>
<Info> <EJB> <EJB Deploying file: ejb20_basic_containerManaged.jar>
<Info> <JDBC> <Connection for pool "demoPool" created.>
<Info> <EJB> <EJB Deployed EJB with JNDI name ejb20-
containerManaged-AccountHome.>
<Info> <J2EE> <Deployed : ejb20_basic_containerManaged>

Testing the EJB20 Examples

Returning to the Command Prompt (or telnet) window you used to build the EJB 2.0 bean, you
may now run the simple client application provided with the example by typing:

java examples.ejb20.basic.containerManaged.Client

 Note: The application will run only if you earlier set the CLASSPATH properly using the
setExamplesEnv script, because the Client.class file is actually located in the
config/examples/clientclasses directory structure.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

20 Buy the printed version of this book at http://www.titan-books.com

You should see the following output from the client application:
Beginning containerManaged.Client...
Starting Part A of the example...
Creating account 10020 with a balance of 3000.0 account type
Savings...
Account 10020 successfully created
Part A: Depositing $2000
Current balance is $5000.0
Attempting to withdraw an amount greater than current balance.
Expecting an exception...
Received expected Processing Error:
examples.ejb20.basic.containerManaged.ProcessingErrorException:
Request to withdraw $5001.0; is more than balance $5000.0 in account
10020
Removing account...
End Part A of the example...

<snip>

Querying for accounts with a null account type
Account ID: 0; account type is null
Account ID: 5; account type is null
Account ID: 10; account type is null
Account ID: 15; account type is null
Removing beans...
End Part B of the example...
End containerManaged.Client...

The following error message indicates that the EJB is not properly deployed or has not registered
its home interface in the JNDI tree:

The client was unable to lookup the EJBHome.
Please make sure that you have deployed the ejb with the JNDI name
ejb20-containerManagedAccountHome on the WebLogic server...

Ensure that the EJB component is targeted to the examplesServer. Rebooting the server may
help.

An error message similar to the following message indicates that you have not created the
required ejbAccounts table in the database used by the demoPool JDBC pool:

Error creating account: EJB Exception:; nested exception is:
java.sql.SQLException: Invalid object name 'ejbAccounts'. Severity
16, State 1, Procedure 'localhost null', Line 5

Once you have the ejb20_basic_containerManaged example working, feel free to build and test
some of the other EJB 2.0 examples that are provided by WebLogic. In each case, move to the

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 21

proper /wlserver6.1/samples/ejb20/basic/xxxx directory and use the ant all command to
build and deploy the example, performing whatever management-console tasks are required to
properly deploy the bean. You may need to create additional tables to support these examples –
see the documentation packaged with the example to identify database requirements.

There is an additional EJB 2.0 example (“bands”) provided in the normal installation. This
example, located in the /examples/ejb20/bands directory, illustrates the use of CMP 2.0
relationships, sequences, cascade delete, and other EJB 2.0 features. You may build and deploy
this example as well, but recognize that we will be examining many of these same features step by
step in this workbook by walking through the examples and exercises in the O’Reilly EJB book.

Congratulations! You are now ready to create the JDBC database and ejbbook domain we will be
using for the workbook examples.

Building the Workbook Database
There are three ways to create the database tables required to support the workbook exercises:

1. Create an empty database in some JDBC-compliant database technology available to you,
then create each table when a specific exercise requires you to, using the details spelled out in
the workbook text.

2. Create an empty database in a JDBC-compliant database technology for which the workbook
download site provides a complete database-creation script. Create the database yourself and
run the script to create all of the tables before starting work on the first exercise.

3. Use the evaluation version of the Cloudscape database that ships with WebLogic and
download a pre-configured database containing all of the necessary tables and data.

We recommend Option #1 . Building the database one step at a time as it is needed to support the
exercises, will help you learn about the specific database requirements for the EJBs and
relationships introduced in each exercise.

Use Option #2 if you want to use your own JDBC database rather than Cloudscape, and you wish
to skip as much database configuration work as possible.

Option #3 is the fastest approach: it avoids all database-creation and configuration tasks.

 Avoid using an Oracle database for the workbook examples. Oracle-specific changes must be
made in two of the tables you will be creating in Exercise 7.1 in order to avoid the reserved
word NUMBER. These changes complicate your task of mapping bean attributes to database
columns in subsequent exercises, requiring you to edit the WebLogic CMP descriptor file in
each exercise to reflect the changes. If you choose to use Oracle, details of the required
changes are provided in Exercise 7.1, and the downloadable oracle.sql script creates tables
with legal column names.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

22 Buy the printed version of this book at http://www.titan-books.com

Option #1 – Build Empty Database, Add Tables During Exercises

If you are familiar with a specific database technology and have it available for use with these
exercises, create a new database with a small amount of space (5-10 MB should suffice). Record
the database name, user name, and password, as these will be required in the configuration of the
JDBC connection pool in WebLogic.

That’s it! You should be ready to proceed to the ejbbook domain-configuration step.

If you do not have access to an alternate JDBC-compliant database, the workbook exercises will
operate properly using the Cloudscape evaluation database supplied with the WebLogic 6.1
installation.

 Warning: The Cloudscape product will operate for only 30 days from the WebLogic installation
date even if you have a valid long-term WebLogic Server license. Cloudscape is a separately-
licensed product owned by Informix.

There are at two ways to create and manage Cloudscape databases: the Cloudview graphical tool
and the ij command-line tool. The following sections detail the steps necessary to create an empty
Cloudscape database using each of these tools.

Creating Cloudscape Database using Cloudview

Cloudscape ships with a client application called Cloudview, which is useful for creating and
managing databases.

Cloudview is a Java application that requires two additional archive (.jar) files in the classpath:

<WL_HOME>\samples\eval\cloudscape\lib\tools.jar

<WL_HOME>\samples\eval\cloudscape\lib\cloudscape.jar

The WL_HOME environment variable depends on your installation and platform, but should be
\bea\wlserver6.1 (NT/Win2K) or /opt/bea/wlserver6.1 (SunOS) if you followed the directions
during the product installation step.

Once these archives are added to your classpath, run Cloudview using:
java COM.cloudscape.tools.cview

The download site provides a simple script called cvstart.cmd (or cvstart.sh) in the dbscripts.jar
archive that you can download and use to start Cloudview. Edit the script if necessary to match
your installation.

The Cloudview application should start and display the following interface:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 23

Figure 14: Cloudview splash screen

Open the File menu and choose New and Database. Complete the resulting form:.

Figure 15: Creating a new Cloudscape database

The full path to the database will depend on your platform, but should be something like:

/bea/wlserver6.1/samples/eval/cloudscape/data/bookdb

Click on the OK button. Cloudview will create the new database and display the main control
screen for managing the bookdb database:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

24 Buy the printed version of this book at http://www.titan-books.com

Figure 16: Main screen for new Cloudscape database

That’s all there is to it. Cloudscape has created a new JDBC-compliant database which can be
accessed from within WebLogic using the following properties:

URL: jdbc:cloudscape:bookdb
Driver: COM.cloudscape.core.JDBCDriver
Properties: user=none

server=none
Password: <anything>

You will configure the JDBC connection pool in your WebLogic domain to use this database in a
future step.

From this point forward, when the exercise text tells you to create a table, start Cloudview and
type the correct create-table statement in the SQL window. You may also find the cloudscape.sql
script (available from the workbook download site in the dbscripts.jar archive) useful for this
purpose. It contains the create-table statements for the entire database, allowing you to copy and
paste statements for individual tables to the SQL window without keying them in. You may also
use the graphical tools within Cloudview to build tables, but this is not recommended.

 Warning: The evaluation license for Cloudscape prohibits multiple processes from opening the
database simultaneously. To run the Cloudview program you must first shut down WebLogic,
to disconnect it from the database.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 25

If you’ve chosen to create the required database tables during the exercises (Option #1), you may
now close the Cloudview program and proceed to the section “Configuring EJBBook Domain for
EJB Exercises.”

See the documentation available at http://www.cloudscape.com/ for detailed instructions and
help in using the Cloudview application.

Creating Cloudscape Database using ij Utility

Cloudscape ships with a command-line utility, ij, which is useful for creating and managing
databases. ij is a Java application that requires two additional archive (.jar) files in the classpath:

<WL_HOME>\samples\eval\cloudscape\lib\tools.jar

<WL_HOME>\samples\eval\cloudscape\lib\cloudscape.jar

The WL_HOME environment variable depends on your installation and platform, but should be
\bea\wlserver6.1 (NT/Win2K) or /opt/bea/wlserver6.1 (SunOS) if you followed the directions
during the product installation step.

Once these archives are added to your classpath, run ij using:
java -Dcloudscape.system.home=<WL_HOME>/samples/eval/cloudscape/data
COM.cloudscape.tools.ij

The entire java command should be on a single line. The WL_HOME variable again depends on
your installation.

The download site provides a simple script called ijstart.cmd (or ijstart.sh) in the dbscripts.jar
archive that you can download and use to start ij. Edit the script to match your installation if
necessary.

When ij starts you should see a brief message and then a prompt:
ij version 3.5 (c) 1997-2000 Informix Software, Inc.
ij>

Type help; to print a list of commands. Note that all commands must end with a semi-colon.

There is no explicit create database command in ij; instead, the connect command is used
with an optional create clause. Type the following command at the ij> prompt to create the
bookdb database:

ij> connect 'jdbc:cloudscape:bookdb;create=true';
ij>

The bookdb database is now created and available for use. Use show connections to list the
current database connections and verify that the bookdb connection is present:

ij> show connections;
CONNECTION0* - jdbc:cloudscape:bookdb;create=true
* = current connection
ij>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

26 Buy the printed version of this book at http://www.titan-books.com

Verify that the new database has been created in the correct location on the disk. There should be
a new bookdb directory in the <WL_HOME>/samples/eval/cloudscape/data directory. If the
bookdb directory is not present, make sure you included the proper cloudscape.system.home
definition on the java command line for ij.

Useful commands in ij include:

♦ Connect 'URL' – Connects to the specified Cloudscape database

♦ Disconnect – Disconnects from the current database

♦ Run 'filename' – Runs the commands in the specified file

♦ Exit – Exits the ij utility, closing connections

Normal SQL DDL commands like create table, drop table, insert, update, and delete
are recognized by ij. Don’t forget: all commands must end with a semi-colon.

That’s all there is to it. Cloudscape has created a new JDBC-compliant database that can be
accessed from within WebLogic using the following properties:

URL: jdbc:cloudscape:bookdb
Driver: COM.cloudscape.core.JDBCDriver
Properties: user=none

server=none
Password: <anything>

You will configure the JDBC connection pool in your WebLogic domain to use this database in a
future step.

From this point forward, when the exercise text tells you to create a table, start ij and connect to
the bookdb database using:

ij> connect 'jdbc:cloudscape:bookdb';

After connecting, simply type the correct SQL create-table statement. For example, the CABIN
table will be required for Exercise 4.1; you can create it with the following statement:

ij> create table CABIN
(
 ID int primary key,
 SHIP_ID int,
 BED_COUNT int,
 NAME char(30),
 DECK_LEVEL int
)
;
0 rows inserted/updated/deleted
ij>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 27

You may also find the cloudscape.sql script (available from the workbook download site in the
dbscripts.jar archive) useful for this purpose. It contains the create-table statements for the
entire database, allowing you to copy and paste statements for individual tables without keying
them in.

 Warning: The evaluation license for Cloudscape prohibits multiple processes from opening the
database simultaneously. To run the ij utility and connect to the bookdb database you must
first shut down WebLogic, to disconnect it from the database.

If you’ve chosen to create the required database tables while doing the exercises (Option #1), you
may now close the ij utility (using the exit command) and proceed to the section “Configuring
EJBBook Domain for EJB Exercises.”

See the documentation available at http://www.cloudscape.com/ for detailed instructions and
help in using the ij utility.

Option #2 – Build Empty Database, Create All Tables at Start

If you are familiar with a specific database technology and have it available for use with these
exercises, create a new database with a small amount of space (5-10 MB should suffice). Record
the database name, user name, and password, as these will be required in the configuration of the
JDBC connection pool in WebLogic.

If you do not have access to an alternate JDBC-compliant database, the workbook exercises will
operate properly using the Cloudscape evaluation database supplied with the WebLogic 6.1
installation. Follow the instructions in the Option #1 discussion above to create an empty
Cloudscape database and return here when that step is complete.

Table-creation scripts are available in the workbook download area of the site for the following
database technologies:

♦ mssqlserver.sql – Microsoft SQL Server 7 or higher

♦ oracle.sql – Oracle 8.1.x or higher

♦ db2udb.sql – IBM DB/2 UDB 7.1 or higher

♦ cloudscape.sql – Cloudscape evaluation database supplied with WebLogic 6.1

After creating an empty database using your technology of choice, execute the commands in one
of these scripts, using the graphical tool or command-line tool supplied with the database
technology. Verify that all of the tables were created properly and that the five sequence tables
have a valid row before proceeding to the next step.

If you have chosen to use Cloudscape and create the tables yourself, you may use either the
Cloudview application or the ij command-line utility.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

28 Buy the printed version of this book at http://www.titan-books.com

Creating Workbook Tables using Cloudview

Start Cloudview (using cvstart.cmd or .sh) and use the File menu to open the bookdb database
created in the earlier step. The SQL window on the right side should be empty. Use Notepad or
some other editing tool to copy the contents of the cloudscape.sql script and paste them into this
window (Figure 17), or click on the script icon and load the cloudscape.sql script from disk.

Figure 17: Creating tables using Cloudview SQL window

Click on the lightning icon to execute the script. Cloudview will create all tables, and pre-
populate each of the sequence tables used for automatic key generation with a valid row of data.

Open the Tables folder in the navigation pane and compare the display with Figure 18 to ensure
all tables were created successfully.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 29

Figure 18: Verifying all tables were created in database

The bookdb database is now prepared for use. Close Cloudview and proceed to the next section,
“Configuring EJBBook Domain for EJB Exercises.”

Creating Workbook Tables using ij Utility

Start the ij utility (using ijstart.cmd or .sh) and connect to the bookdb database:
C:\work\ejbbook>ijstart
...
C:\work\ejbbook>java
-Dcloudscape.system.home=\bea\wlserver6.1/samples/eval/cloudscape/
data COM.cloudscape.tools.ij
ij version 3.5 (c) 1997-2000 Informix Software, Inc.
ij> connect 'jdbc:cloudscape:bookdb';
ij>

Next, run the cloudscape.sql script:
ij> run 'cloudscape.sql';

The script will create all tables, and pre-populate each of the sequence tables used for automatic
key generation with a valid row of data.

The bookdb database is now prepared for use. Close ij and proceed to the next section,
“Configuring EJBBook Domain for EJB Exercises.”

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

30 Buy the printed version of this book at http://www.titan-books.com

Option #3 – Download Complete Cloudscape Database

The workbook download site provides a pre-created bookdb database for Cloudscape containing
all of the tables and data required for the exercises. There is no need to run Cloudview or ij,
create an empty database, or run any table-creation scripts. Who could ask for more?

Perform the following steps to install this pre-created database:

1. Download the bookdb.jar file from the workbook download site.

2. Copy the file to the /bea/wlserver6.1/samples/eval/cloudscape/data directory, adjusting
this path to reflect your installation details.

3. Extract the contents of the file to the data directory using jar xvf bookdb.jar, creating a
bookdb subdirectory and a series of additional Cloudscape files and subdirectories under the
bookdb directory.

That’s all there is to it. The bookdb Cloudscape database is now prepared for use and is available
in WebLogic using the JDBC properities:

URL: jdbc:cloudscape:bookdb
Driver: COM.cloudscape.core.JDBCDriver
Properties: user=none

server=none
Password: <anything>

Configuring EJBBook Domain for EJB Exercises
While the workbook examples could conceivably run in the examples domain, or in the empty
mydomain domain created by the installation process, by creating a new domain you will learn
the process and better understand the structure and configuration of a WebLogic domain.

Creating an Empty EJBBook Domain

There are two options for creating a new domain:

♦ Simply copy and rename an entire existing domain directory structure to create the new
domain, editing all of the files in the domain root directory to reflect the new domain name.

♦ Use the management console to create the new domain, copy a few key files from an empty
domain like mydomain in to the new domain, and create the required services and domain
configuration items by hand in the console.

Option 1 is appropriate for more advanced users who will be able to troubleshoot all of the name-
related problems. We’ll be using Option 2 since it will provide a good opportunity to walk step by
step through the creation of the many components in a working domain.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 31

To use the WebLogic console to create the new domain, boot a working domain (like examples)
and open the console. Go to the main home page if not already there. The right side of the screen
should look like Figure 7. Click on the Domain Configurations link and you should see a page
like Figure 19.

Figure 19: Creating a new domain

Enter the name of the new domain (ejbbook) in the text field and click on Create.

WebLogic will create the new domain directory under the wlserver6.1/config directory and place
a skeleton config.xml in that new domain root directory. You should be back at the main home
page for the console. Click on Domain Configurations again and the resulting list of domain
names should now include your new ejbbook domain, as in Figure 20:

Figure 20: Verifying the ejbbook domain was created

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

32 Buy the printed version of this book at http://www.titan-books.com

Click on the ejbbook link and the console will display the main home page with the new ejbbook
domain hierarchy displayed in the navigation pane on the left:

Figure 21: Main home page for new ejbbook domain

Click on a few of the folders on the left side and you will notice that there are no servers,
applications, EJBs, web applications, JDBC pools, or other services defined in the domain. Also
note that when you are editing a domain different from the “active” or running domain, you
cannot modify security information such as users, groups, and ACLs.

Configuring EJBBook Domain

You can accomplish the first few configuration steps using the management console. Note that
you are still running the examples domain and are essentially using that domain to edit the
config.xml file in the new ejbbook domain. You will be unable to boot the new domain until the
basic configuration steps are complete and you’ve copied some scripts to the new domain root
directory.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 33

Step 1 – Create and Configure a Server in the ejbbook domain

Click on the Servers folder in the navigation pane on the left. The page on the right should
display an empty list of servers:

Figure 22: Starting to create a new server

Click on the Configure a new Server… link and fill out the form as shown below:

Figure 23: Configuring the new server

Note that myserver is all lower case. Click on Create to continue.

Now click on the Logging tab and change the Severity Threshold Level to Info and apply
changes.

This is about as far as you can safely go without booting the ejbbook domain, so shut down the
examples server (you can do this through the management console, or by simply stopping the
process in the command/telnet window with control-C).

Step 2 – Configure ejbbook domain root directory

Booting the new ejbbook domain requires the following files in the /config/ejbbook directory:

♦ startWebLogic.cmd or startWebLogic.sh

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

34 Buy the printed version of this book at http://www.titan-books.com

♦ fileRealm.properties and SerializedSystemIni.dat

♦ ca.pem, democert.pem, demokey.pem, and 1024-bit versions of these files if present

There should also be an applications directory and a logs directory.

Win2K/NT

In a command-prompt window, perform the following steps to copy and configure these required
files and directories:

1. Change to \bea\wlserver6.1\config\ejbbook directory.

2. Copy *.pem files from the mydomain domain root directory.
copy ..\mydomain*.pem .

3. Copy security/realm files from mydomain. Overwrite any existing copy in ejbbook.
copy /Y ..\mydomain\fileRealm.properties .
copy /Y ..\mydomain\SerializedSystemIni.dat .

4. Copy the startWebLogic.cmd script from mydomain.
copy ..\mydomain\startWebLogic.cmd .

5. Edit startWebLogic.cmd and make the following changes:

♦ Replace all occurrences of the word mydomain with ejbbook – be sure to fix the java
command-line occurrence (-Dweblogic.Domain=ejbbook)

♦ Modify the line that sets STARTMODE=true to be STARTMODE=false in order to run
WebLogic in “development” mode and enable automatic deployment, a feature discussed
in a later section.

6. Create applications and logs directories and copy the applications directory structure from
mydomain, including all subdirectories and files (xcopy is a good tool for this, or use
Explorer to copy the folder).
mkdir logs
mkdir applications
xcopy /E ..\mydomain\applications applications

SunOS

In a telnet window perform the following steps to copy and configure these required files and
directories:

cd /opt/bea/wlserver6.1/config/ejbbook
cp -p ../mydomain/*.pem .
cp -p ../mydomain/fileRealm.properties .
cp -p ../mydomain/SerializedSystemIni.dat .
cp -p ../mydomain/startWebLogic.sh .
vi startWebLogic.sh

Change mydomain to ejbbook everywhere it appears

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 35

Change STARTMODE=true to STARTMODE=false to enable auto deploy

mkdir logs
mkdir applications
cp –r -p ../mydomain/applications/* applications

Win2K/NT or SunOS

On either platform, the startWebLogic script may need a slight modification to support the
JDBC-compliant database you’ve chosen to use. The version copied from the mydomain domain
will have a line similar to the following:

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar

If you are using the Cloudscape evaluation database provided with WebLogic, add the
cloudscape.jar file to the CLASSPATH by appending it to this line:

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;.\samples\e
val\cloudscape\lib\cloudscape.jar

Other database technologies will require different Java libraries in the CLASSPATH for the
server. Consult your database documentation for the name and location of the required files and
append them to the CLASSPATH in a similar manner.

For example, IBM DB/2 UDB database requires the following lines be added in startWebLogic:
set CLASSPATH=%CLASSPATH%;\sqllib\java\db2java.zip
set PATH=%PATH%;\sqllib\bin

Cloudscape also requires an additional variable definition on the java command used to run the
WebLogic Server. Edit the startWebLogic script and add the following definition to the main
java command near the bottom of the file:

-Dcloudscape.system.home=./samples/eval/cloudscape/data

For reference, here is a listing of the startWebLogic.cmd file for a typical NT/Win2K installation
with the changes required for Cloudscape highlighted in the listing:

@echo off
...
:runWebLogic
echo on
set PATH=.\bin;%PATH%

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;.\samples\e
val\cloudscape\lib\cloudscape.jar

echo off
...
echo on

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

36 Buy the printed version of this book at http://www.titan-books.com

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath %CLASSPATH%
-Dweblogic.Domain=ejbbook
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dweblogic.Name=myserver "-Dbea.home=C:\bea"
"-Djava.security.policy==C:\bea\wlserver6.1/lib/weblogic.policy"
-Dweblogic.management.password=weblogic weblogic.Server
goto finish

:finish
cd config\ejbbook
ENDLOCAL

 Note that, in the file, the java command should be all on one line.

That should be it. Cross your fingers and execute the startWebLogic script to attempt to boot the
new ejbbook domain. The final line in the log should be:

... <Notice> <WebLogicServer> <Started WebLogic Admin Server
"myserver" for domain "ejbbook" running in Development Mode>

Verify that the domain is correct (ejbbook) and that the server is running in development mode.
If something is wrong, stop the server and edit the startWebLogic script to fix the problem.

Step 3 – Create a JDBC pool and datasource in ejbbook domain

Open a new management console browser window. You should see the main home page for the
ejbbook domain.

Click on the JDBC folder on the left to open it, then click on the Connection Pools subfolder
under JDBC to view the current connection pools. The page on the right side should show an
empty list of pools.

Click on the Configure a new JDBC Connection Pool... link and fill out the form with the
appropriate JDBC connection-pool information for your database, as in Figure 24:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 37

Figure 24: Configuring a connection pool for ejbbook

The pool information (URL, Driver Classname, Properties, etc.) should be the same as the
information used when you configured the examples domain to use your selected JDBC database.
If you created a new bookdb Cloudscape database for use in the exercises, the pool information
would be:

URL: jdbc:cloudscape:bookdb
Driver: COM.cloudscape.core.JDBCDriver
Properties: user=none

server=none
Password: <anything>

The pool name should be titan-pool to be consistent with the downloadable example code and
subsequent discussions in this workbook, although the pool name itself is not actually used in the
deployment descriptors for the EJBs. Click on Create to continue.

Configure the initial and maximum number of connections to be higher than the defaults of one
initial and one maximum set automatically by WebLogic. Click on the Connections tab and set
the Initial Capacity to 2 and the Maximum Capacity to 10, then click on Apply to save the
change. Allowing additional connections will be important during Exercise 13.2.

Next, target the JDBC pool to the server we created in the first step. Click on the Targets tab and
move myserver from the Available list to the Chosen list and apply the change.

The final step is the creation of a data source associated with the JDBC pool you just created.
Open the JDBC folder in the navigation pane and click on the Data Sources subfolder. The
right page should display an empty list of JDBC Data Sources. Click on the Configure a new
JDBC Data Source... link and fill out the form as shown in Figure 25.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

38 Buy the printed version of this book at http://www.titan-books.com

Figure 25: Associating a data source with the connection pool

Enter the data source name exactly as shown (titan-dataSource) to be consistent with the
downloadable example code and descriptors for the exercises. Click on Create to create the data
source.

Finally, click on the Targets tab and move myserver from Available to Chosen to target the
titan-dataSource data source to the myserver server.

Congratulations, you now have a valid, running ejbbook domain!

This might be a good time to configure the default web application for the server and perform a
simple HTTP test. When you copied the applications directory from mydomain, this included a
DefaultWebApp directory structure containing a simple web application (WEB-INF directory,
web.xml file, etc). Because the DefaultWebApp directory is located in the magic applications
directory, its presence was detected and the web application was automatically deployed during
the boot process. Click on the Web Applications folder in the navigation pane on the left side
of the console. You should see a list of applications similar to the following:

Figure 26: Finding the default web application

You should see the DefaultWebApp application somewhere on the list. Click on the link under the
Name column and examine some of the details for the application. Look in the Targets tab and

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 39

make sure the DefaultWebApp web application is targeted to myserver, fixing it to be so if
necessary.

Finally, verify that the DefaultWebApp web application is actually the default web application for
myserver. Open the server configuration page (click on the myserver item in the Servers
folder in the navigation pane) and open the Configuration/HTTP page in the nested notebook
on the right. Ensure that DefaultWebApp appears in the first droplist as the selected default web
application for myserver, fixing it and applying the change to make it so if not. This change does
not take effect until you reboot the domain in the current version of WebLogic, so exit the console
and reboot the server at this time.

Once you have associated the default application with your server, you can test the HTTP and
web-application functionality of the server . Open a separate browser window and attempt to
access the URL:

http://servername:7001/index.html

Replace “servername” with localhost or the address of your server as appropriate. You should see
a simple WebLogic index page. You can find the file for this page at:

/config/ejbbook/applications/DefaultWebApp/index.html

Feel free to edit this file or create other HTML files in this directory to convince yourself that your
ejbbook domain is able to serve web pages from this default web application.

Note that you do not specify the full context path /DefaultWebApp/index.html in the URL
because the server was configured to use this web application as the default if no other context
path is specified. Contrast this with the console web application which requires that you specify
http://server:port/console/… when you use the console application because it is not the default
web application for the server.

Configuring TitanApp Application in EJBBook Domain

There are a number of ways to deploy web-application components and EJB components in J2EE
server products such as WebLogic. A detailed discussion of .war files, .jar files, and .ear files is
beyond the scope of this workbook. The online documentation describes the many options and
issues; see these two locations:

http://edocs.bea.com/wls/docs61/adminguide/appman.html

http://e-docs.bea.com/wls/docs61/programming/packaging.html).

The basic rule of thumb is that any component placed in the magic applications directory is
loaded by a separate classloader (actually a heirarchy of classloaders, see below) in WebLogic,
allowing for individual re-deployment of that component. This is true for .war files containing
web applications, .jar files containing one or more EJB components, and .ear files containing
combinations of .jar and .war files. Exploded versions of these archive-file types are also treated
in the same manner, meaning that if you create the proper directory structure and descriptor files

http://servername:7001/index.html
http://edocs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

40 Buy the printed version of this book at http://www.titan-books.com

required for an archive, the resulting directory structure will be treated (more or less) as a single
archive file.

The downside to having many individual .jar files in the applications directory (the way the
examples domain was configured during installation) is that no component loaded by one
classloader can see or use classes loaded by a different classloader at the same “level” in the
hierarchy of loaders. For this reason, it is very common to create a single .ear archive file
containing all web-application components, EJB components, and supporting classes and deploy
this monolithic .ear file as a single application in WebLogic.

WebLogic 6.1 uses a heirarchy of classloaders for an enterprise application archive (.ear) file as
illustrated in Figure 27. All EJB components and utility classes are loaded by the top-level
classloader and have mutual visibility, and all web-application components and servlets are
loaded by child classloaders of the top-level classloader and therefore have visibility to all top-
level classes. This is important because it allows web-application components in .ear files to use
all classes located in top-level .jar archive files, including EJB remote interfaces, local interfaces
(references to the beans themselves), custom exception classes, utility classes, etc. There is no
need to place common classes such as these in the system classpath or in“client” jar files in the
web application /WEB-INF/lib directory as was commonly done in WebLogic 5.1.

Figure 27: Class loader heirarchy used for .ear files

There are many pros and cons involved in choosing a deployment technique. For this workbook,
we will be using the single monolithic .ear file approach to give good mutual visibility between
components in the application; but we will deploy the .ear file as an exploded directory structure
under the applications directory to avoid the final archive step and to make the individual pieces
of an enterprise application archive more visible.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 41

All of the example EJB components and JSP pages created in the following sections of this
workbook will be part of a new exploded enterprise (.ear) application called titanapp. Enterprise
applications have the following basic form:

rootdir\
 EJB .jar files
 Web-App .war files
 META-INF\
 application.xml enterprise app descriptor file

Each of the archive files in the enterprise application (.ear) file can likewise be a true archive file
or an exploded file. In our case, we will include a simple web application called webapp in our
titanapp enterprise application, using the exploded .war format, so our final exploded directory
structure will be:

titanapp\
 EJB .jar files
 webapp\
 .html files
 .jsp files
 WEB-INF\
 web.xml web-app descriptor file
 weblogic.xml weblogic-specific descriptor
 META-INF\
 application.xml enterprise app descriptor
 REDEPLOY empty file used by WebLogic
 to redeploy application

Before we can begin building and deploying the example EJBs, we must create this set of
directories and files under the ejbbook/applications directory. The download site for this
workbook includes a prebuilt version of this empty titanapp enterprise archive directory structure
(titanapp_empty.jar). You may download and extract the directory structure and files to your
config/ejbbook/applications directory to create the exploded titanapp application or build the
application manually.

If you choose to build the structure and descriptor files manually, use the following as minimal
models for the respective files:

web.xml
<?xml version="1.0" ?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>EJBBook Examples Web Application</display-name>
</web-app>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

42 Buy the printed version of this book at http://www.titan-books.com

weblogic.xml
<?xml version="1.0" ?>
<!DOCTYPE weblogic-web-app PUBLIC
"-//BEA Systems, Inc.//DTD Web Application 6.0//EN"
"http://www.bea.com/servers/wls600/dtd/weblogic-web-jar.dtd">
<weblogic-web-app>
 <jsp-descriptor>
 <jsp-param>
 <param-name>pageCheckSeconds</param-name>
 <param-value>1</param-value>
 </jsp-param>
 <jsp-param>
 <param-name>verbose</param-name>
 <param-value>true</param-value>
 </jsp-param>
 </jsp-descriptor>
</weblogic-web-app>

application.xml
<?xml version="1.0" ?>
<!DOCTYPE application PUBLIC
'-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>
<application>

<display-name>titanapp</display-name>
<description>Examples from OReilly EJB Book</description>
<module>

<web>
<web-uri>webapp</web-uri>
<context-root>webapp</context-root>

</web>
</module>

</application>

 Important note: Stop the ejbbook domain while you are building these directory structures
until everything seems to be correct, then boot the domain. It should see the new exploded
enterprise application and automatically deploy it in the domain.

Open the management console and click on the Applications folder in the navigation pane on
the left. You should see the titanapp application in the list on the right:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 43

Figure 28: Finding the titanapp application

Click on the titanapp link in the Name column and drill down to the webapp component within
the application and verify that it is properly targeted to the myserver server.

Place a simple JSP page such as the following in the webapp directory in the exploded structure
and attempt to view this JSP page using a URL like:

http://servername:7001/webapp/simple.jsp

simple.jsp
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Simple JSP Page</TITLE></HEAD>
<BODY>
<H2>Counting Fun</H2>
<% for (int jj=1; jj<=10; jj++) { %>

<%= jj %>

<% } %>
</BODY>
</HTML>

Congratulations! You have now successfully created and configured an enterprise application in
the ejbbook domain, including a web application able to serve up JSP pages.

You are ready to begin building, deploying, and testing the example EJB components from the
O’Reilly EJB book! Let’s go!

Exercise Code Setup and Configuration
The example code is organized as a series of directories, one for each “exercise” called out in the
O’Reilly EJB book. These directories must be located beneath a common directory containing a
handful of common configuration files. The discussion in this workbook will assume that the
working directory is organized as shown below:

http://servername:7001/webapp/simple.jsp

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

44 Buy the printed version of this book at http://www.titan-books.com

\work\ejbbook\
 common.properties used by build.xml scripts
 setEnv.cmd or .sh script to set envir vars
 ex04_1\ Exercise 4-1 files
 build.xml
 setEnv.cmd or .sh calls common version
 <descriptors>
 com\
 titan\
 pkg1\
 EJB .java files
 pkg2\
 EJB .java files
 clients\
 Client .java files

 ex04_2\ Exercise 4-2 files
 ...

The individual ex##_# directories will be known in this workbook as the “exercise work root”
directories. You should always perform builds for a given exercise from the exercise work root
directory for that exercise.

Some EJB components are built/deployed/tested in one exercise and then used in a subsequent
exercise (CabinEJB is an example). Other beans are created in one exercise and then modified
heavily in subsequent exercises. Keeping each exercise in a separate directory structure is a way
to insulate previous work from changes required for subsequent exercises even when the same
beans are involved in both exercises.

The download site for this workbook provides copies of the common files required in the
/work/ejbbook directory in archive files called work_ejbbook_win.jar and work_ejbook_sol.jar.
Download one of these files, create a working directory (/work/ejbbook) to use as the root for all
of the exercises, and extract the contents of the archive file into that working directory. The
common.properties file in the archive is shown below and may require modification if your
installation does not match the assumed directory structure:

common.properties – NT/Win2K
JAVA_HOME=/bea/jdk131
WEBLOGIC_HOME=/bea/wlserver6.1
DOMAIN=ejbbook
APPLICATION=titanapp

common.properties – SunOS
JAVA_HOME=/opt/bea/jdk131
WEBLOGIC_HOME=/opt/bea/wlserver6.1
DOMAIN=ejbbook
APPLICATION=titanapp

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 45

The download site for this workbook also contains individual .jar archives for each exercise called
out in the O’Reilly EJB book. When you extract one of these exercise archives, be sure to extract it
in the /work/ejbbook directory so that the resulting ex##_# exercise work root directory is a
direct subdirectory of the /work/ejbbook directory, allowing the build.xml files in each exercise to
find the common.properties file in the “..” directory relative to themselves.

Each downloaded exercise archive will typically include the following files:

♦ build.xml – Ant build script, normal targets are clean, compile, ejbjar, dist, and redeploy.

♦ setEnv.cmd/.sh – Scripts to set environment variables before building the exercise.

♦ ejb-jar.xml, weblogic-jar.xml, other xml descriptor files.

♦ Source code for EJB beans in com/titan/xxxx package directory.

♦ Source code for Client java programs in com/titan/clients directory.

♦ Client JSP files in /jsp directory.

Finally, there is a single archive file (everything.jar) available on the download site that contains
all exercise archive files and all of the other scripts and archives described in the previous sections
if this is more convenient than downloading the files you need one at a time.

Enough preparation – why not build your first example?

47

Exercises for Chapter 4

48

Exercise 4.1:
A Simple Entity Bean
The Cabin EJB demonstrates basic CMP 2.0 capability for a simple entity bean mapped to a single
table. The following sections outline the steps necessary to download, build, deploy, and test the
Cabin EJB.

Download and Build the Example Programs

Perform the following steps:

1. Download the ex04_1.jar file from the download site for the workbook and place it in your
main work root directory (/work/ejbbook or equivalent).

2. Open a Command Prompt or telnet window and change to this directory.

3. Extract the files from the archive using jar xvf. If jar is not in your path, modify your user
profile or system environment variables to add the <BEAHOME>/jdk131/bin directory in the
BEA installation to your default path. The correct jar command is:
jar xvf ex04_1.jar

4. Change directories down to the ex04_1 directory created by the extraction process.

5. Execute the setEnv.cmd script or setEnv.sh script to set environment variables properly
before attempting to build the example. On SunOS, be sure to use . ./setEnv.sh to add
the environment variables in the script to your shell environment.

6. Perform the build by typing ant dist to run the ant utility and execute everything in the
build.xml file required to compile and deploy the EJB files.

If you are not familiar with the ant application, visit the Ant web site in the Jakarta project at
http://jakarta.apache.org/ant/index.html to learn about this utility. The build.xml file provided
with the workbook exercises contains the following tasks:

♦ clean – Removes all .class and .jar files from the working directory (and subdirectories)

♦ compile – Compiles all EJB and client Java files

♦ ejbjar – Performs the ejbc process to create a packaged EJB application .jar file (titanejb.jar),
containing all of the EJB components in this exercise

♦ dist – Copies the titanejb.jar file and any JSP files to their proper locations in the titanapp
enterprise application within the ejbbook domain directory structure

♦ redeploy – Forces a running copy of WebLogic to redeploy the titanapp application
(discussed in detail in Exercise 4-2)

There are dependencies expressed in the script using the depends attributes in the task tags.
When the dist task is run, for example, it first performs the compile and ejbjar tasks if these are

http://jakarta.apache.org/ant/index.html

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 49

required based on file time stamps, etc. The workbook will typically instruct you to execute a
specific task like dist knowing that ant will perform other tasks like compile automatically if
required. Feel free to perform builds one step at a time if it helps you understand the process.

To see details of the operations performed by ant, use the -verbose option on the command
line.

Create the Required Database Objects

Exercise 4-1 requires a single table (CABIN) in the database used by the JDBC pool we configured,
titan-pool. The schema should be:

create table CABIN
(
 ID int primary key,
 SHIP_ID int,
 BED_COUNT int,
 NAME char(30),
 DECK_LEVEL int
)

Examine the WebLogic-Specific Files/Components

Take a moment to examine the descriptors in the ex04_1 directory to understand the custom
descriptors required by WebLogic for the Cabin EJB. Every EJB deployed in WebLogic requires a
descriptor file called weblogic-ejb-jar.xml which defines WebLogic-specific container parameters
and provides other run-time information required by the server. Think of this file as an extension
to the standard ejb-jar.xml file required by all EJBs. See the online documentation at
http://e-docs.bea.com/wls/docs61/ejb/reference.html for a detailed description of all elements
and valid values.

In the case of the CabinEJB, this file is fairly straightforward:

http://e�docs.bea.com/wls/docs61/ejb/reference.html

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

50 Buy the printed version of this book at http://www.titan-books.com

weblogic-ejb-jar.xml
<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'>
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>CabinEJB</ejb-name>
 <entity-descriptor>
 <entity-cache>
 <max-beans-in-cache>100</max-beans-in-cache>
 </entity-cache>
 <persistence>
 <persistence-type>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>6.0</type-version>
 <type-storage>
 META-INF/weblogic-cmp-rdbms-jar.xml
 </type-storage>
 </persistence-type>
 <persistence-use>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>6.0</type-version>
 </persistence-use>
 </persistence>
 </entity-descriptor>
 <jndi-name>CabinHomeRemote</jndi-name>
 </weblogic-enterprise-bean>
 <!-- Map the normal weblogic users to the everyone role -->
 <security-role-assignment>
 <role-name>everyone</role-name>
 <principal-name>guest</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-ejb-jar>

Because this exercise is the first one, we’ll take the time to walk through this descriptor and
discuss the important elements.

<ejb-name>CabinEJB</ejb-name>

The <ejb-name> element provides a tie back to the <ejb-name> element in ejb-jar.xml.

 <entity-cache>
 <max-beans-in-cache>100</max-beans-in-cache>
 </entity-cache>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 51

This set of elements defines the maximum number of beans of this class (CabinBean) allowed in
memory at the same time. WebLogic will begin passivating beans if this limit is reached during
execution, swapping less-recently-used beans to disk to make room for new instances.

 <persistence>
 <persistence-type>
 …
 </persistence-type>
 <persistence-use>
 …
 </persistence-use>
 </persistence>

The <persistence> elements indicate the CMP persistence type, version, and associated
weblogic-cmp descriptor file to be used at runtime for bean persistence services. The ejbc process
also reads this element to find the CMP descriptor file to use in generating the CMP java class.

 <jndi-name>CabinHomeRemote</jndi-name>

The <jndi-name> element specifies the JNDI name the container will use when registering this
bean’s Home interface in the JNDI tree. This name will be used by clients (and other beans) to
perform JNDI lookup operations.

 <security-role-assignment>
 <role-name>everyone</role-name>
 <principal-name>guest</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>

The final elements in the weblogic-jar.xml file map the security role everyone defined in the
ejb-jar.xml file to specific users within the WebLogic default realm. By mapping guest to the
required role, you ensure that no additional authentication or credentials will be required when
invoking methods on the bean.

The other WebLogic-specific descriptor file is weblogic-cmp-rdbms-jar.xml. This file is required
only for CMP entity beans:

weblogic-cmp-rdbms-jar.xml
<!DOCTYPE weblogic-rdbms-jar PUBLIC
 '-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS
Persistence//EN'
 'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-
persistence-600.dtd'>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

52 Buy the printed version of this book at http://www.titan-books.com

<weblogic-rdbms-jar>
 <weblogic-rdbms-bean>
 <ejb-name>CabinEJB</ejb-name>
 <data-source-name>titan-dataSource</data-source-name>
 <table-name>CABIN</table-name>
 <field-map>
 <cmp-field>id</cmp-field>
 <dbms-column>ID</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>shipId</cmp-field>
 <dbms-column>SHIP_ID</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>bedCount</cmp-field>
 <dbms-column>BED_COUNT</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>name</cmp-field>
 <dbms-column>NAME</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>deckLevel</cmp-field>
 <dbms-column>DECK_LEVEL</dbms-column>
 </field-map>
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

The Cabin EJB is a very simple bean with a small number of columns, so the CMP descriptor file
is very simple:

 <ejb-name>CabinEJB</ejb-name>

The <ejb-name> element again provides a tie back to the previous descriptor files.

 <data-source-name>titan-dataSource</data-source-name>
 <table-name>CABIN</table-name>

The <data-source-name> and <table-name> elements indicate the Data Source to be used
for persistence services (recall that a Data Source is a J2EE-defined abstraction on top of a
specific JDBC connection pool) as well as the specific table in the schema containing this bean’s
persistent data. Note that there can be only one <table-name> element, so mapping a bean
across multiple tables requires a view in the database, or other custom technique.

 <field-map>
 <cmp-field>id</cmp-field>
 <dbms-column>ID</dbms-column>
 </field-map>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 53

Each attribute in the bean is mapped to a specific database column using a <field-map>
element.

The ejbc process uses the descriptor information in these two WebLogic-specific files along with
the standard ejb-jar.xml file to generate all of the persistence services and concrete
implementations of the abstract methods defined in the bean class.

Deploy the EJB Components to WebLogic

After using the ant ejbjar task, place the titanejb.jar file in the root directory of the exploded
enterprise archive directory structure. Assuming that you are using the suggested
domain/application names, the pathname will be:

./config/ejbbook/applications/titanapp/titanejb.jar

The provided ant dist task places the completed EJB jar file in the correct location.

Because you are using an exploded .ear type of structure, WebLogic will not automatically deploy
the EJB when the file appears in the directory, even after a reboot of the server. This minor
disadvantage is offset by the advantage inherent in WebLogic’s policy of using a single class
loader for everything in an .ear file, whether exploded or not.

The console enables you to deploy EJBs through a set of configuration screens if the EJB .jar file
is located in the applications directory, but you cannot use it to deploy an EJB within an exploded
.ear file. For this reason, and to be consistent with the structure and requirements of a valid .ear
file, you should add the new EJB in the application descriptor file so it will be deployed
automatically when the server boots and loads the exploded .ear file.

Steps to add an EJB to an exploded .ear file:

1. Edit titanapp/META-INF/application.xml and add an <ejb> module element to the
application. The next time WebLogic is booted it will pick up the new EJB and deploy it
within the application.
<application>

<display-name>titanapp</display-name>
<description>Examples from OReilly EJB Book</description>
<module><web>

<web-uri>webapp</web-uri>
<context-root>webapp</context-root>

</web></module>
<module><ejb>titanejb.jar</ejb></module>

</application>

2. Reboot WebLogic and open the console. In the navigation tree on the left side of the console
you should now see the titanejb deployed as an EJB component within the titanapp
application:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

54 Buy the printed version of this book at http://www.titan-books.com

Figure 29: Verifying the deployment of titanejb component

3. Click on the titanejb component within the titanapp application. The right pane should show
the name, URI, and path of titanejb, and the Deployed checkbox should be set.

Figure 30: Verifying configuration of titanejb component

4. Click on the Targets tab to bring up two lists of servers:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 55

Figure 31: Verifying that titanejb is properly “targeted”

5. When an EJB component is deployed for the first time by reading the application.xml file in
the .ear (exploded or not), WebLogic does not know on which servers this component should
be available. Move the myserver target from Available to Chosen to indicate that this
component should be deployed on the server myserver, then press Apply.

The bean is now deployed and ready for testing.

WebLogic saves the configuration of this EJB component, including target information, in the
config.xml file. Subsequent reboots of the server will deploy the EJB component properly,
whether the <module><ejb> entry continues to appear in the application.xml file or not.

The GUI-averse can avoid using the console when deploying a new EJB component within an
exploded .ear file:

1. Add the EJB component to the META-INF/application.xml file as described above.

2. Ensure the ejbbook domain is not running.

3. Modify the config.xml file for the ejbbook domain to add a new <EJBComponent> element
for the titanejb component to the titanapp <Application> element:

<Application Deployed="true" Name="titanapp"
 Path=".\config\ejbbook\applications\titanapp">
 <EJBComponent Name="titanejb" Targets="myserver"
 URI="titanejb.jar"/>
 <WebAppComponent Name="webapp" Targets="myserver" URI="webapp"/>
</Application>

4. Restart the WebLogic server. The bean should now be deployed and ready for testing.

Verify that the bean is properly deployed and has registered its Home interface in the JNDI tree
by examining the contents of the JNDI tree. In WebLogic 6.1 the only way to view the JNDI tree
is to right-click on the server icon in the navigation tree on the left side, and select View JNDI

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

56 Buy the printed version of this book at http://www.titan-books.com

Tree from the popup menu. You should see a new browser window displaying the JNDI tree in
the left navigation pane, including entries for the titan-dataSource and CabinHomeRemote:

Figure 32:Viewing the JNDI tree for myserver

Browse through the tree and examine the various entries to get a better sense of how the JNDI
service works in a WebLogic environment. If you do not see the CabinHomeRemote and data
source entries in the tree, examine the log file during a reboot for any error messages that might
indicate the cause of the problem.

Examine and Run the Client Applications

Two client applications provided in the workbook download follow the examples in the O’Reilly
EJB book:

♦ Client_41.java – Creates a single Cabin bean and populates its attributes, then looks it up
again by primary key.

♦ Client_42.java – Creates 99 additional beans with a variety of data useful in subsequent
client programs.

Examine the Client_41 source code to identify the WebLogic-specific code and review the basics
of JNDI lookups and bean creation.

Client_41.java
package com.titan.clients;

import com.titan.cabin.CabinHomeRemote;
import com.titan.cabin.CabinRemote;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;
import java.util.Properties;

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 57

public class Client_41 {
 public static void main(String [] args) {
 try {
 Context jndiContext = getInitialContext();
 Object ref = jndiContext.lookup("CabinHomeRemote");
 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(ref,CabinHomeRemote.class);
 CabinRemote cabin_1 = home.create(new Integer(1));
 cabin_1.setName("Master Suite");
 cabin_1.setDeckLevel(1);
 cabin_1.setShipId(1);
 cabin_1.setBedCount(3);

 Integer pk = new Integer(1);
 CabinRemote cabin_2 = home.findByPrimaryKey(pk);
 System.out.println(cabin_2.getName());
 System.out.println(cabin_2.getDeckLevel());
 System.out.println(cabin_2.getShipId());
 System.out.println(cabin_2.getBedCount());

 } catch (java.rmi.RemoteException re)
 {re.printStackTrace();}
 catch (javax.naming.NamingException ne)
 {ne.printStackTrace();}
 catch (javax.ejb.CreateException ce)
 {ce.printStackTrace();}
 catch (javax.ejb.FinderException fe)
 {fe.printStackTrace();}
 }

 public static Context getInitialContext()
 throws javax.naming.NamingException {

 Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");
p.put(Context.PROVIDER_URL, "t3://localhost:7001");

 return new javax.naming.InitialContext(p);
 }
}

The first line in the main method calls the getInitialContext method to acquire a reference
to the JNDI context. The getInitialContext method specifies the proper values for
INITIAL_CONTEXT_FACTORY and PROVIDER_URL for attaching to the WebLogic JNDI context.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

58 Buy the printed version of this book at http://www.titan-books.com

Note that the PROVIDER_URL assumes that the client is executing on the same machine as the
WebLogic server instance (i.e., the localhost in the URL).

The next 7-8 lines employ the JNDI tree to look up the CabinHomeRemote interface, create an
empty entity bean with the primary key of 1, and set the persistent attributes for the bean to some
valid values.

The next six lines find this bean by specifying the primary key, then display the persistent
attributes of the bean using the newly-acquired reference to it. The displayed values should be
the same as the values set via the original reference.

Run the client application by invoking java and specifying the fully-qualified class name of the
client. Don’t forget to run the setEnv.cmd or .sh script before running the client if you have not
already done so.

C:\work\ejbbook\ex04_1>setenv
...
C:\work\ejbbook\ex04_1>java com.titan.clients.Client_41

The output of the client application should be:
Master Suite
1
1
3

Note that Client_41 adds a row to the database representing the bean and does not delete it at the
conclusion of the application. You can examine the database and see the row in the table for this
bean to convince yourself it truly did get saved to the database. Unfortunately, if you attempt to
run Client_41 again it will attempt to insert the same bean in the database, and you will get an
error:

java.rmi.RemoteException: EJB Exception:; nested exception is:
java.sql.SQLException: Violation of PRIMARY KEY constraint
'PK_CABIN'.
Cannot insert duplicate key in object 'CABIN'.

If you do not get an error like this, look at your table definition again – it is likely you forgot to set
the ID column as a unique primary key in the CABIN table and you now have multiple rows in the
database with the same ID. If you find yourself in this situation, delete everything in the table, fix
the ID column to be a unique primary key, and run Client_41 once again to create the row. Then,
run the client one more time, to verify that the database reports some sort of duplicate-key
exception.

Examine Client_42.java yourself to understand the use of repeated calls to create on the Home
interface to make many beans. The output from running this example should look something
like:

PK = 1, Ship = 1, Deck = 1, BedCount = 3, Name = Master Suite
PK = 2, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 100
PK = 3, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 101

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 59

PK = 4, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 102
PK = 5, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 103
PK = 6, Ship = 1, Deck = 1, BedCount = 2, Name = Suite 104
PK = 7, Ship = 1, Deck = 1, BedCount = 3, Name = Suite 105
...
PK = 97, Ship = 3, Deck = 4, BedCount = 2, Name = Suite 406
PK = 98, Ship = 3, Deck = 4, BedCount = 3, Name = Suite 407
PK = 99, Ship = 3, Deck = 4, BedCount = 2, Name = Suite 408
PK = 100, Ship = 3, Deck = 4, BedCount = 3, Name = Suite 409

After running Client_42, check that you have rows in the CABIN table for ID values 1-100, with no
holes or duplicates. Like Client_41, this example creates rows in the table and does not delete
them when finished, so Client_42 can be run only once without causing duplicate-key exceptions.

Examine and Run the Client JSP Pages

The ant dist task copied a number of JavaServer Pages (JSP) files from the /ex04_1/jsp directory
to the webapp directory contained in the titanapp application. This workbook includes JSP-
based versions of many of the client applications, and in some cases provides JSP examples in lieu
of Java client applications (Chapter 7&8 exercises). If a JSP page is provided for a client
application, it will have the same root name as the Java client (e.g., Client_41.java has a matching
Client_41.jsp file).

Recall that any JSP page located in the webapp directory inside the titanapp application is
accessed through the WebLogic server using a URL like:

http://servername:7001/webapp/Client_41.jsp

The servername portion of the URL will be localhost if you are running WebLogic on your own
workstation.

If you attempt to run this JSP after successfully executing the Java versions of Client_41 and
Client_42, be prepared for a Primary Key Constraint error from the database, because the rows
you are trying to create already exist (you did remember to set the ID column in the CABIN table
as a unique primary key column, right?). You’ll need to delete all of the data in the CABIN table
before running the JSP versions of these clients.

Provided with the client JSP pages in this exercise is a small utility JSP page called ViewDB.jsp,
which provides a handy (and cross-platform) mechanism for viewing and deleting the data in
your database. Try invoking this JSP now by opening a new browser and accessing this page with
a URL like this one:

http://servername:7001/webapp/ViewDB.jsp

You should see a page with content similar to this (assuming you’ve successfully run the Client_41
and Client_42 Java programs already):

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

60 Buy the printed version of this book at http://www.titan-books.com

View and Delete Data in Database

Delete All Rows in All Workbook Tables

CABIN
ID=1 SHIP_ID=1 BED_COUNT=3 NAME=Master Suite DECK_LEVEL=1 Delete Row
ID=2 SHIP_ID=1 BED_COUNT=2 NAME=Suite 100 DECK_LEVEL=1 Delete Row
...
ID=98 SHIP_ID=3 BED_COUNT=3 NAME=Suite 407 DECK_LEVEL=4 Delete Row
ID=99 SHIP_ID=3 BED_COUNT=2 NAME=Suite 408 DECK_LEVEL=4 Delete Row
ID=100 SHIP_ID=3 BED_COUNT=3 NAME=Suite 409 DECK_LEVEL=4 Delete Row

Delete all rows in CABIN table

SHIP
Error reading table, may not be present yet.

CUSTOMER
Error reading table, may not be present yet.

ADDRESS
Error reading table, may not be present yet.

-- more tables listed and not present yet --

The ViewDB.jsp page essentially dumps the contents of all tables created in the workbook
exercises, to give you an easy way to see all related database rows in a single display. It also
provides links to delete individual rows from a table, delete all rows in a table, or delete all rows in
all workbook tables, to make it much easier to clean up the database after a bad run or when you
wish to re-run a client program which creates data. Note that if you have referential integrity
turned on between related tables, you’ll have to perform the delete operations in the proper order
(children first, then parents), or the database won't allow the deletes. The Delete All Rows in
All Workbook Tables link should perform deletes in the right order based on the relationships
defined in these exercises.

In this case you want to run the Client_41.jsp and Client_42.jsp pages, so click on the link to
Delete all rows in CABIN table. The table should now appear (and be!) empty. Now you can
execute the Client_41 and _42 JSP pages to re-create the CABIN rows and use the ViewDB JSP to
verify the rows are present again before proceeding to Exercise 4-2.

ViewDB.jsp will come in handy many times over the course of the workbook. Modify it to your
own purposes if you wish, or ignore it completely and use some other database viewing and
manipulation program, as you see fit.

61

Exercise 4.2:
A Simple Session Bean
The TravelAgent EJB demonstrates the use of a stateless session bean to encapsulate process-
related logic, including the use of Cabin entity beans.

Download and Build the Example Programs

Perform the following steps:

1. Download ex04_2.jar from the download site for the workbook and place it in your main
work root directory (/work/ejbbook or equivalent).

2. Open a Command Prompt or telnet window and change to this directory.

3. Extract the files from the archive using jar xvf. See the details in Exercise 4-1 if you need
more information.

4. Change directories down to the ex04_2 directory created by the extraction process.

5. Execute the setEnv.cmd script or setEnv.sh script to set environment variables properly
before attempting to build the example.

6. Perform the build by typing ant dist to run the ant utility and execute everything in the
build.xml required to compile and deploy the EJB files.

Create the Required Database Objects

Because the TravelAgent EJB is a stateless session bean, no additional database configuration is
required. The CABIN table must still be available from the previous exercise, and should contain
the 100 rows created by the successful execution of the Client_41 and Client_42 programs.

Examine the WebLogic-Specific Files/Components

The weblogic-ejb-jar.xml descriptor for a stateless EJB is normally very short. In this case it has
an additional element mapping the Cabin EJB <ejb-ref> tag from the standard ejb-jar.xml file
to the JNDI name of the Cabin bean:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

62 Buy the printed version of this book at http://www.titan-books.com

weblogic-ejb-jar.xml
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>CabinEJB</ejb-name>
 …
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>TravelAgentEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>100</max-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 <reference-descriptor>
 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>
 <jndi-name>TravelAgentHome</jndi-name>
 </weblogic-enterprise-bean>
 <!-- Map the normal weblogic users to the everyone role -->
 <security-role-assignment>
 <role-name>everyone</role-name>
 <principal-name>guest</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-ejb-jar>

Look at some of the new elements introduced in this exercise:
 <stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>100</max-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>

The first new element is the <max-beans-in-free-pool> element which controls the
maximum number of bean instances available in the free pool before the container begins
synchronizing access to these stateless session beans. This mechanism can be a powerful way to
throttle or limit the number of simultaneous requests for a resource-intensive service.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 63

 <reference-descriptor>
 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <jndi-name>CabinHomeRemote</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>

The next new section of the weblogic-ejb-jar.xml descriptor file is related to some elements in the
ejb-jar.xml file. Recall that ejb-jar.xml had a section like this:

 <ejb-ref>
 <!-- requires an entry in weblogic-ejb-jar.xml also -->
 <ejb-ref-name>ejb/CabinHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 </ejb-ref>

The <ejb-ref-name> element in the ejb-jar.xml file provides the portable JNDI name available
within the TravelAgent EJB to look up the Cabin EJB Home interface. The corresponding <ejb-
reference-description> element in the weblogic-ejb-jar.xml file maps this portable name
back to the specific JNDI name used to register the Cabin Home interface (defined in the Cabin
EJB section of the weblogic-ejb-jar.xml descriptor file).

Finally, note that the TravelAgent EJB will be registering its Home interface using the JNDI name
TravelAgentHomeRemote. This will be the name client applications use during lookup
operations.

Deploy the EJB Components to WebLogic

After using ant ejbjar to build the new titanejb.jar file, containing both the Cabin EJB and
TravelAgent EJB, place it in the root directory of the exploded enterprise archive directory
structure. Assuming that you are using the suggested domain/application names, the pathname
will be:

./config/ejbbook/applications/titanapp/titanejb.jar.

The ant dist task places the completed EJB jar file in the correct location.

Because we’ve simply replaced the old version of titanejb.jar with a new one containing both
beans, there is no additional deployment or targeting effort necessary to configure the new EJB in
WebLogic. If the server was not running during the ant dist task, simply reboot WebLogic and it
should deploy both beans.

WebLogic provides the capability to “hot deploy” and “hot redeploy” application components in a
running server. If the server was running when the ant dist task placed the updated copy of

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

64 Buy the printed version of this book at http://www.titan-books.com

titanejb.jar in the proper location, you can now perform a hot redeployment of the enterprise
application to test this functionality.

Redeployment of an .ear application archive is normally performed automatically when the time
stamp on the .ear file itself changes. WebLogic polls for this change according to a schedule
defined in the domain configuration. Ensure that this feature is enabled in the ejbbook domain
by opening a console, clicking on the ejbbook node in the navigation pane, opening the
Configuration-Applications tab, and checking that the Auto Deployment Enabled
checkbox is selected for the domain.

Because we’re using an exploded .ear deployment mechanism there is no single .ear file for
WebLogic to monitor for time-stamp changes. Rather than constantly scanning the directory
structure for any files with time-stamp changes, WebLogic monitors a single “magic” file called
REDEPLOY located in the META-INF directory of the exploded .ear structure as a surrogate for
monitoring the entire exploded structure. In other words, if the time stamp on REDEPLOY
changes, WebLogic treats the change as a request to re-deploy the entire enterprise application.

The build.xml file includes a redeploy task to make this process straightforward. While the server
is running, execute the ant redeploy task to touch the REDEPLOY file and force a re-deployment
of the entire titanapp enterprise application. If you are monitoring the output from the WebLogic
server instance, you should see many messages related to the undeploy/redeploy process.
Assuming everything redeploys smoothly, you should be able to avoid rebooting the server for this
and subsequent exercises using the redeploy task when a modified application is ready for
deployment. If the redeploy task fails to work, it may be caused by WebLogic’s new “production
mode” feature discussed during the server setup portion of the workbook. Redeploy will work
only in development mode, so ensure that the startWebLogic.cmd or .sh file for the ejbbook
domain sets the STARTMODE variable to false.

Whether you performed a hot re-deployment of the titanapp application or simply re-booted the
server to deploy the new EJB components, verify that the TravelAgent EJB is properly deployed:
Examine the JNDI tree for the server (right-click on the server in the navigation pane and choose
View JNDI tree), and check that both CabinHomeRemote and TravelAgentHomeRemote are
registered in the tree.

Examine and Run the Client Applications

There is one client application for this exercise that uses the TravelAgent EJB to list cabins which
meet certain criteria. The important code is shown below.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 65

Client_43.java
...
Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("TravelAgentHomeRemote");
TravelAgentHomeRemote home = (TravelAgentHomeRemote)
PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

TravelAgentRemote travelAgent = home.create();

// Get a list of all cabins on ship 1 with a bed count of 3.
String list [] = travelAgent.listCabins(SHIP_ID,BED_COUNT);

for(int i = 0; i < list.length; i++){
 System.out.println(list[i]);
}
...

Note that the Home interface’s create method is used when a client wishes to acquire a
reference (a remote interface) to a session bean. The client uses the resulting remote reference to
call business methods. Each business method invocation is performed by some instance of the
bean in the pool without regard for previous invocations. In this example the business method is
listCabins, which accepts two parameters and returns an array of String objects.

Let’s examine the code in the TravelAgent EJB listCabins method for any WebLogic-specific
code or other interesting snippets.

TravelAgentBean.java
public String [] listCabins(int shipID, int bedCount) {
 try {
 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 p.put(Context.PROVIDER_URL, "t3://localhost:7001");
 javax.naming.Context jndiContext = new InitialContext(p);
 Object obj =
 jndiContext.lookup("java:comp/env/ejb/CabinHomeRemote");

 CabinHomeRemote home = (CabinHomeRemote)
 PortableRemoteObject.narrow(obj,CabinHomeRemote.class);
 ...

The first few lines of listCabins should look familiar – it is acquiring a JNDI context object
using the WebLogic-specific properties we’ve normally seen used in a client application. In a way,
the TravelAgent EJB is a client of the Cabin EJB just like any other client, so this makes some
sense.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

66 Buy the printed version of this book at http://www.titan-books.com

Note that because both objects are contained in a single copy of WebLogic, the setting of these
properties could be eliminated, and the empty constructor for InitialContext used with the
same effective result.

The JNDI lookup appears different than before. The code is acquiring a reference to the Home
interface for the Cabin EJB, but rather than look it up by the name “CabinHomeRemote” the code
is using the JNDI Environment Naming Context (ENC) name specified in the <ejb-ref-name>
element in the TravelAgent ejb-jar.xml descriptor. As discussed in the EJB book, the root for
these JNDI ENC lookups is always java:comp/env so the final JNDI lookup becomes
java:comp/env/ejb/CabinHomeRemote, as shown in the code.

The rest of the listCabins method is a fairly straightforward (if awkward) mechanism for
looking at every Cabin EJB, and placing information in the returned array of strings if the current
bean matches the requested criteria. Note that in a real application this type of “query” would be
performed by a “finder” method, something we will be discussing and creating in later exercises.

Run the client application by invoking java and specifying the fully-qualified class name of the
client. Don’t forget to run the setEnv.cmd or .sh script before running the client if you have not
already done so.

C:\work\ejbbook\ex04_2>setenv
...
C:\work\ejbbook\ex04_2>java com.titan.clients.Client_43

The output of the client application should be:
1,Master Suite,1
3,Suite 101,1
5,Suite 103,1
7,Suite 105,1
9,Suite 107,1
12,Suite 201,2
14,Suite 203,2
16,Suite 205,2
18,Suite 207,2
20,Suite 209,2
22,Suite 301,3
24,Suite 303,3
26,Suite 305,3
28,Suite 307,3
30,Suite 309,3

Examine and Run the Client JSP Pages

The Client_43.jsp page is the same as the Client_43.java client program. Try this page to verify
that it provides the same information as the Java client. It was copied to the titanapp/webapp
directory during the ant dist task, so it should be available using the typical URL:

http://servername:7001/webapp/Client_43.jsp

67

Exercises for Chapter 5

68

Exercise 5.1:
The Remote Component Interfaces
Exercise 5.1 explores a number of the features of the Home interface for an EJB, including the
remove method and the metadata available on the EJB’s definition and interfaces.

Download and Build the Example Programs

Download and extract the example directory ex05_1 and examine the contents. This exercise is a
“pure client” exercise – it uses the EJB components built in the previous exercises but does not
actually define them or modify them in any way.

Use the ant dist task to build the client programs.

Create the Required Database Objects

This exercise requires no additional database objects.

Examine the WebLogic-Specific Files/Components

This exercise introduces no WebLogic-specific files or components.

Deploy the EJB Components to WebLogic

This exercise introduces no new EJB components. The Cabin EJB and TravelAgent EJB must be
properly deployed and running in the WebLogic server. (If you have successfully completed
Exercise 4-2, they will be.)

Examine and Run the Client Applications

There are two client applications and one “utility” client application provided in the workbook
download. These follow the examples in the O’Reilly EJB book:

♦ Client_51.java – Demonstrates use of remove on the Cabin EJB Home interface.

♦ Client_52.java – Demonstrates use of metadata methods.

♦ Client_51_undo.java – Re-creates the single Cabin bean deleted in Client_51 to allow re-
running of Client_51 or the equivalent JSP page.

Because this exercise does not actually create or include all of the EJB code, the classpath must
include the titanejb-client.jar file when running the client applications. The script setEnv.cmd
(or the .sh version) sets the classpath properly, and the ant compile task in the build script

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 69

ensures that the titanejb-client.jar is copied from the previous exercise to be available in the
classpath.

Examine the Client Java code if you want to, but it is fairly straightforward and follows the
example in the EJB book closely.

The output from Client_51 should look as described in the EJB book, and the output from
Client_52 should be something like:

com.titan.cabin.CabinHomeRemote
com.titan.cabin.CabinRemote
java.lang.Integer
false
Master Suite

Note that if you attempt to run Client_51 again without running the Client_51_undo application,
the remove call will fail and you will receive an exception report like the following:

java.rmi.RemoteException: EJB Exception:; nested exception is:
javax.ejb.NoSuchEntityException: Bean with primary key: '30' not
found.

Examine and Run the Client JSP Pages

The three client applications are duplicated as JSP pages for your use and examination. Once
deployed to the /webapp directory by the ant dist task, they should be available using the normal
URL syntax for workbook JSP pages.

Note that there is no equivalent to setEnv required when JSP pages in the webapp web
application attempt to access EJB components. This is a byproduct of our decision to use an
enterprise application (i.e., an exploded .ear file) containing all EJB components as well as the
web application itself, an arrangement which causes all classes in the EJB components to be
visible to the webapp components.

70

Exercise 5.2:
The EJBObject, Handle, and Primary Key
Exercise 5.2 explores some esoteric capabilities of EJB components, including EJBObject
methods and Handles, and demonstrates the importance of the primary key for a bean.

Download and Build the Example Programs

Download and extract the example directory ex05_2 and examine the contents. This exercise is
also a “pure client” exercise – it uses the EJB components built in the previous exercises but does
not actually define them or modify them in any way.

Use the ant dist task to build the client programs.

Create the Required Database Objects

This exercise requires no additional database objects.

Examine the WebLogic-Specific Files/Components

There are no WebLogic-specific files or components introduced in this exercise.

Deploy the EJB Components to WebLogic

This exercise introduces no new EJB components. The Cabin EJB and TravelAgent EJB must be
properly deployed and running in the WebLogic server.

Examine and Run the Client Applications

Three client applications provided in the workbook download follow the examples in the O’Reilly
EJB book:

♦ Client_53.java – Demonstrates using EJBObject to retrieve the home interface using a bean
reference.

♦ Client_54.java – Demonstrates serialization of primary keys and equivalence of remote
references to the same bean.

♦ Client_55.java – Demonstrates use of handles.

This exercise is similar to Exercise 5-1 in that you must run setEnv.cmd (or .sh) before running
the client applications to place the titanejb-client.jar file in the classpath properly.

Let’s examine the interesting portions of these client programs individually.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 71

Client_53.java

This client application demonstrates acquiring a reference to the Home interface for a bean using
a remote interface to the same bean. The following code in the main method acquires a remote
reference to the EJB and passes it to the other method, getTheEJBHome:

...
// Get a remote reference to the bean (EJB object).
TravelAgentRemote agent = home.create();
// Pass the remote reference to some method.
getTheEJBHome(agent);
...

The getTheEJBHome method then uses the remote reference to re-acquire a reference to the
Home interface for the bean and display some metadata:

Object ref = agent.getEJBHome();
TravelAgentHomeRemote home = (TravelAgentHomeRemote)

PortableRemoteObject.narrow(ref,TravelAgentHomeRemote.class);

// Do something useful with the home interface
EJBMetaData meta = home.getEJBMetaData();
System.out.println(meta.getHomeInterfaceClass().getName());
System.out.println(meta.getRemoteInterfaceClass().getName());
System.out.println(meta.isSession());

Client_54.java

This client application explores the importance of the primary key in identifying specific entity
beans and demonstrates the equivalence of two different references to the same entity bean. The
testReferences method creates a bean and acquires two references to the same bean:

System.out.println
 ("Creating Cabin 101 and retrieving additional reference by pk");
CabinRemote cabin_1 = home.create(new Integer(101));
Integer pk = (Integer)cabin_1.getPrimaryKey();
CabinRemote cabin_2 = home.findByPrimaryKey(pk);

Next the application performs a series of tests to prove the two references actually refer to the
same entity bean:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

72 Buy the printed version of this book at http://www.titan-books.com

System.out.println("Testing reference equivalence");
// We now have two remote references to the same bean -- Prove it!
cabin_1.setName("Keel Korner");
if (cabin_2.getName().equals("Keel Korner")) {

System.out.println("Names match!");
}

// Test the isIdentical() function
if (cabin_1.isIdentical(cabin_2)) {

System.out.println("cabin_1.isIdentical(cabin_2) returns true -
This is correct");
} else {

System.out.println("cabin_1.isIdentical(cabin_2) returns false -
This is wrong!");
}

The second method of the Client_54 example program, testSerialization, uses output
streams to write the primary key for the bean to a file, reads it back in again, and uses it to locate
the desired entity bean once again. Because the primary key object is serializable and contains
everything required to identify the unique bean it represents, the new reference does in fact refer
to the same entity bean as the original reference.

Client_55.java

This client application explores the Handle and HomeHandle objects and demonstrates the
process of serializing and deserializing these objects and re-acquiring references to the related
EJBObject and Home interfaces. The code is well documented and fairly self-explanatory, so
there will be no detailed examination in this text.

Examine and Run the Client JSP Pages

The three client applications are duplicated as JSP pages for your examination. Note that
WebLogic uses the /wlserver6.1 directory as the location for the temporary files when the JSP
pages write the serialized handles/keys to disk. This is an interesting by-product of the directory
change (cd ..\..) that occurs in the startWebLogic script provided by WebLogic.

73

Exercise 5.3:
The Local Component Interfaces
This exercise demonstrates the use of local interfaces for the Cabin entity bean from within the
TravelAgent stateless session bean and shows the changes required in the descriptor files to
configure local interfaces and register multiple interfaces in the JNDI tree.

Download and Build the Example Programs

Download and extract the example directory ex05_3 and examine the contents. This exercise is
an extension of Exercise 4.2 with new “local” versions of the Cabin home and bean interfaces, so
there are two new source files in the com/titan/cabin directory:

♦ CabinLocal.java – contains the definition of the local interface for the bean

♦ CabinHomeLocal.java – contains the local home interface for the bean

These files are identical to the versions described in the EJB book.

Use the ant dist task to build and deploy the EJB components.

Create the Required Database Objects

This exercise requires no additional database objects.

The CABIN table should contain all of the rows created during Exercise 4.1.

Examine the Standard EJB Descriptor File

The standard descriptor file ejb-jar.xml is nearly identical to the version from Exercise 4.2, with
the minor changes outlined in the EJB book to configure the new local interfaces:

<enterprise-beans>
 <entity>
 <ejb-name>CabinEJB</ejb-name>
 <home>com.titan.cabin.CabinHomeRemote</home>
 <remote>com.titan.cabin.CabinRemote</remote>
 <local-home>com.titan.cabin.CabinHomeLocal</local-home>
 <local>com.titan.cabin.CabinLocal</local>
 <ejb-class>com.titan.cabin.CabinBean</ejb-class>
 ...
 </entity>

These elements inform the ejbc process and the container that the Cabin EJB will have both a
local and remote set of interfaces available.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

74 Buy the printed version of this book at http://www.titan-books.com

The next change is in the TravelAgent EJB descriptor, where the use of the local interfaces in the
bean code requires a change to the reference descriptor:

 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 ...
 <ejb-local-ref>
 <!-- requires an entry in weblogic-ejb-jar.xml also -->
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>com.titan.cabin.CabinHomeLocal</local-home>
 <local>com.titan.cabin.CabinLocal</local>
 </ejb-local-ref>
 ...
 </session>

Application code within the TravelAgent bean will now use a JNDI ENC lookup with
ejb/CabinHomeLocal to access the Cabin home interface.

Examine the WebLogic-Specific Files/Components

The weblogic-ejb-jar.xml file is very similar to the version from Exercise 4.2, with a few changes
required to support the new local Cabin interfaces.

First, the Cabin EJB section in weblogic-ejb-jar.xml contains two elements defining JNDI names
for the bean:

 <weblogic-enterprise-bean>

 <ejb-name>CabinEJB</ejb-name>

 <entity-descriptor>
 ...
 </entity-descriptor>

 <jndi-name>CabinHomeRemote</jndi-name>
 <local-jndi-name>CabinHomeLocal</local-jndi-name>

 </weblogic-enterprise-bean>

By specifying both JNDI names we’ve told WebLogic to register the Cabin home interface twice in
the JNDI tree. The names cannot be identical, so we’ve followed the convention in the EJB book
and appended Remote and Local to the appropriate JNDI names.

Next, the <ejb-local-ref> elements in the ejb-jar.xml file must have corresponding mapping
elements in the weblogic-ejb-jar.xml file to map the ejb/CabinHomeRemote JNDI ENC lookup
syntax to the actual JNDI name in the tree:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 75

 <weblogic-enterprise-bean>
 <ejb-name>TravelAgentEJB</ejb-name>
 ...
 <reference-descriptor>
 <ejb-local-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <jndi-name>CabinHomeLocal</jndi-name>
 </ejb-local-reference-description>
 </reference-descriptor>
 ...
 </weblogic-enterprise-bean>

There is no change in the contents of the weblogic-cmp-rdbms-jar.xml file from the version in
Exercise 4.2. Changing the interface definitions for a bean to include a local interface has no
effect on the underlying persistence mechanism or CMP fields.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the titanapp directory in the
ejbbook domain. Use the redeploy task to touch the REDEPLOY file and force a re-deployment of
the entire titanapp enterprise application, or simply reboot the server to deploy the new
titanejb.jar file.

Use the console to verify that TravelAgentHomeRemote, CabinHomeRemote, and
CabinHomeLocal are registered in the JNDI tree.

Examine and Run the Client Applications

One client application is provided in the workbook download, Client_58.java.

The Client_58 example program is identical to the Client_43 application from Exercise 4.2,
calling the listCabins method on the TravelAgent EJB to list the cabins having a specific deck
level and bed count. The Cabin beans created in Exercise 4.1 must still exist in the database for
this example to operate properly.

Set the environment variables and run Client_58 in the normal manner:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

76 Buy the printed version of this book at http://www.titan-books.com

C:\work\ejbbook\ex05_3>setenv
...
C:\work\ejbbook\ex05_3>java com.titan.clients.Client_58
1,Master Suite,1
3,Suite 101,1
5,Suite 103,1
7,Suite 105,1
9,Suite 107,1
12,Suite 201,2
14,Suite 203,2
16,Suite 205,2
18,Suite 207,2
20,Suite 209,2
22,Suite 301,3
24,Suite 303,3
26,Suite 305,3
28,Suite 307,3
30,Suite 309,3

Examine and Run the Client JSP Pages

The Client_58.jsp page was copied to the proper webapp directory in the titanapp application
during the ant dist task, so it should be available using the normal URL:

http://servername:7001/webapp/Client_58.jsp

77

Exercises for Chapter 6

78

Exercise 6.1:
Basic Persistence in CMP 2.0
This exercise covers the creation of a new CMP entity bean, the Customer EJB. You will be
starting over with a new ejb-jar.xml file and building up a large set of interrelated entity beans
throughout this chapter and next.

Download and Build the Example Programs

Download and extract the example directory ex06_1 and examine the contents. We’re starting
over in the creation of our EJB archive, so the Cabin EJB and TravelAgent EJB are absent.

Use the ant dist task to build and deploy the Customer EJB component and the related client
program.

Create the Required Database Objects

This exercise requires a new table, CUSTOMER:

CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20),
 HAS_GOOD_CREDIT BIT[1]
)

Make sure the ID column is a unique primary key to avoid duplicate records with the same
identifier.

Examine the Standard EJB Descriptor File

The ejb-jar.xml file contains descriptor information for a single bean, the Customer EJB:
<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 79

 <abstract-schema-name>Customer</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
 </entity>

Very similar to the first ejb-jar.xml file developed in Exercise 4-1, this version simply defines the
cmp fields present in the Customer bean along with standard descriptor elements. The remaining
section of the file defines the security and transactional attributes of the bean:

 <assembly-descriptor>
 <security-role>
 <role-name>Employees</role-name>
 </security-role>
 <method-permission>
 <role-name>Employees</role-name>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Note that the security role name has changed from everyone to Employees for this exercise and
the remaining exercises in the workbook.

Examine the WebLogic-Specific Files/Components

The WebLogic-specific files for this exercise are the same two files always present for CMP 2.0
entity beans: weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml.

♦ weblogic-ejb-jar.xml
This file serves to extend the information in the standard ejb-jar.xml file, as required by the
WebLogic container. Like the version in Exercise 4-1, it specifies the run-time caching limits,
the name of the CMP-related descriptor file, and the name to use in the JNDI registration,
and it maps users in the WebLogic realm to the role name used in the ejb-jar.xml file.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

80 Buy the printed version of this book at http://www.titan-books.com

♦ weblogic-cmp-rdbms-jar.xml
Like the file from Exercise 4-1, this version provides specific CMP mapping information
needed to build the CMP persistence functions that read and write data from the database.
The JDBC data source is specified, along with the specific table name in the database, and
each attribute in the entity bean is mapped to a column in the database through a single
<field-map> element:

...
<field-map>
 <cmp-field>lastName</cmp-field>
 <dbms-column>LAST_NAME</dbms-column>
</field-map>
...

Refer to the detailed discussion of this file in Exercise 4-1 for more details.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the titanapp directory in
the ejbbook domain. Use the redeploy task to touch the REDEPLOY file and force a re-
deployment of the entire titanapp enterprise application, or simply reboot the server to deploy
the new titanejb.jar file.

Use the console to verify that CustomerHomeRemote is registered in the JNDI tree.

Examine and Run the Client Applications

A single client application (Client_61) is provided for this exercise. It is modeled after the
example in the EJB book and requires careful use of command-line arguments for proper
operation. Let’s examine some of the code in the client program:

Client_61.java

First, we need some preliminary code to ensure the number of command-line arguments is a
multiple of three for the application to work properly (the reason will become clear momentarily):

if (args.length<3 || args.length%3!=0) {
System.out.println("Usage: java com.titan.clients.Client_61 <pk1>

<fname1> <lname1> ...");
System.exit(-1);

}

Next there is some code to break up the command-line arguments and create a Customer bean for
each set of three arguments (primary key, first name, and last name):

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 81

// obtain CustomerHome
Context jndiContext = getInitialContext();
Object obj = jndiContext.lookup("CustomerHomeRemote");
CustomerHomeRemote home = (CustomerHomeRemote)
 PortableRemoteObject.narrow(obj, CustomerHomeRemote.class);

// create Customers
for(int i = 0; i < args.length; i++) {
 Integer primaryKey = new Integer(args[i]);
 String firstName = args[++i];
 String lastName = args[++i];
 CustomerRemote customer = home.create(primaryKey);
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setHasGoodCredit(true);
}

Please don’t code this way at home. At the end of this loop there will be a set of persistent
Customer beans in the database. The next section looks them up via primary key (again looping
through the command-line arguments), reports their names, and deletes them again:

// find and remove Customers
for(int i = 0; i < args.length; i+=3) {

Integer primaryKey = new Integer(args[i]);
CustomerRemote customer =

 home.findByPrimaryKey(primaryKey);
String lastName = customer.getLastName();
String firstName = customer.getFirstName();
System.out.print(primaryKey+" = ");
System.out.println(firstName+" "+lastName);

// remove Customer
customer.remove();

}

Run the client by supplying a set of the Customer's pk, firstname, and lastname values on
the command line as shown here:

java com.titan.clients.Client_61 777 Greg Nyberg 888 Bob Smith

The resulting output should be:
777 = Greg Nyberg
888 = Bob Smith

Because the beans are removed within the second loop, there will be no data in the database at the
conclusion of the application. Feel free to modify the client application to eliminate the remove
call in the loop and examine the CUSTOMER table at the conclusion of a test run.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

82 Buy the printed version of this book at http://www.titan-books.com

Note that the CUSTOMER table definition limits the size of the first and last names to 20 characters
each. If you attempt to create a customer with either name longer than 20 characters, the
program will fail at the corresponding set method within the first loop processing the command-
line arguments. The customer will be half saved, with a row created in the database missing one
or both name values. In addition, because the second loop never gets executed, any other
customers created in the loop using earlier sets of command-line arguments will be left in the
database. Experiment with this client program to get some appreciation for the importance of
doing all work on a bean in a transaction to avoid causing the container to save each create and
set change independently, as this client does.

Please be sure the table is empty before proceeding to the next exercise.

Examine and Run the Client JSP Pages

There is no JSP page provided for the Client_61 application. Although it would not be difficult to
build a simple HTML form to accept pk, firstname, and lastname values and perform the
same activity in a JSP page, this is left as an exercise for the ambitious reader.

83

Exercise 6.2:
Dependent Value Classes in CMP 2.0
This exercise demonstrates the use of a dependent value class to combine multiple cmp fields in a
single serializable object which can be passed in and out of entity-bean business methods.

Download and Build the Example Programs

Download and extract the example directory ex06_2 and examine the contents.

The new Name class is a serializable class encapsulating last-name and first-name values,
providing a constructor for setting the values and accessors for retrieving the values:

public class Name implements java.io.Serializable {

 private String lastName;
 private String firstName;

 public Name(String lname, String fname){
 lastName = lname;
 firstName = fname;
 }
 public String getLastName() {
 return lastName;
 }
 public String getFirstName() {
 return firstName;
 }
}

The Name class is then used as a parameter for a setName method and as the return type for a
getName method in the CustomerRemote interface and the CustomerBean class:

public interface CustomerRemote extends javax.ejb.EJBObject {

 public Name getName() throws RemoteException;
 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;
 public void setHasGoodCredit(boolean flag)
 throws RemoteException;
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

84 Buy the printed version of this book at http://www.titan-books.com

public abstract class CustomerBean implements javax.ejb.EntityBean {

 ...
 public Name getName() {
 Name name = new Name(getLastName(),getFirstName());
 return name;
 }
 public void setName(Name name) {
 setLastName(name.getLastName());
 setFirstName(name.getFirstName());
 }
 ...
}

As shown in this listing, the getName and setName methods provide the translation between the
Name object and the entity bean's cmp fields.

Comparing the CustomerRemote interface in this exercise with the one in the previous exercise,
you will note that the get and set methods for the lastName and firstName cmp fields are no
longer available in the remote interface. The CustomerBean class still defines the abstract get
and set functions for these cmp fields, but they will no longer be directly accessible from outside
the bean itself.

Because this might be a little confusing, the following tables compare the CustomerRemote and
CustomerBean definitions for these two exercises:

CustomerRemote.java

Exercise 6-1 Exercise 6-2
getLastName
setLastName
getFirstName
setFirstName
getHasGoodCredit
setHasGoodCredit

getName
setName

getHasGoodCredit
setHasGoodCredit

CustomerBean.java

Exercise 6-1 Exercise 6-2

getLastName
setLastName
getFirstName
setFirstName
getHasGoodCredit
setHasGoodCredit

getName
setName
getLastName
setLastName
getFirstName
setFirstName
getHasGoodCredit
setHasGoodCredit

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 85

Use the ant dist task to build and deploy the components and the related client program.

Create the Required Database Objects

This exercise requires no additional database objects. To avoid potential primary-key conflicts, be
sure the CUSTOMER table is empty before running the client program.

Examine the Standard EJB Descriptor File

The ejb-jar.xml file is unchanged from the previous exercise. The addition of a dependent value
object and new business methods has no impact on the standard descriptor file unless the new
methods need special security or transaction descriptor elements

Examine the WebLogic-Specific Files/Components

The WebLogic-specific descriptor files have not changed since the previous exercise.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the titanapp directory in
the ejbbook domain. Use the redeploy task to touch the REDEPLOY file and force a re-
deployment of the entire titanapp enterprise application, or simply reboot the server to deploy
the new titanejb.jar file.

Examine and Run the Client Applications

The client application for this exercise demonstrates the use of the Name dependent value class:

Client_62.java
...
// create example customer
System.out.println("Creating customer for use in example...");
Integer primaryKey = new Integer(1);
Name name = new Name("Monson", "Richard");
CustomerRemote customer = home.create(primaryKey);
customer.setName(name);

// find Customer by key
System.out.println("Getting name of customer using getName()..");
customer = home.findByPrimaryKey(primaryKey);
name = customer.getName();
System.out.print(primaryKey+" = ");
System.out.println(name.getFirstName()+" "+name.getLastName());

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

86 Buy the printed version of this book at http://www.titan-books.com

// change customer's name
System.out.println("Setting name of customer using setName()..");
name = new Name("Monson-Haefel", "Richard");
customer.setName(name);
System.out.println("Getting name of customer using getName()..");
name = customer.getName();
System.out.print(primaryKey+" = ");
System.out.println(name.getFirstName()+" "+name.getLastName());

// remove Customer to clean up
System.out.println("Removing customer...");
customer.remove();
...

This straightforward example highlights some implications of using dependent value classes:

♦ Only Name objects appear in the interface. There are no separate access methods for first
name and last name.

♦ Because Name objects are immutable, a new one must be created whenever a change in either
cmp field is desired.

♦ The setName method is an all-or-nothing mechanism; it always replaces both cmp field
values.

By packaging multiple gets or sets in a single method, a dependent value object effectively reduces
the number of individual remote bean invocations an external client makes. In this example the
Name class reduces the number of calls only slightly. You begin to see the benefit when you
imagine applying the same approach to a bean with many attributes. Without it, the overhead of
the many get and set calls becomes prohibitive very quickly in real-world examples.

 Caution: The client's import statement must include the Name class specifically. If it says
simply import com.titan.customer.*, the customer Name class will conflict with the
Name class in the javax.naming package.

Examine and Run the Client JSP Pages

The downloadable Client_62.jsp example program implements the same type of Customer EJB
interaction as the Java client, with one wrinkle: The page includes a form displaying the last
name and first name of Customer #1, if it exists, and allows you to modify the bean through the
JSP page. Feel free to examine and modify this page to explore the various options available
when a dependent value object like Name is used to make the round trip from entity bean to
HTML form and back to entity bean.

One optional activity that you may wish to try is a demonstration of the concurrency hole that
exists in entity beans used in web applications such as this one. Here's what happens: Two
different browser windows can display the same Customer at the same time. The second window

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 87

to submit will always overwrite updates made by the first window to submit, because the second
window's setName method unconditionally overwrites both fields in the bean with its own
values. As a result, the CMP-generated persistence code for the bean believes both fields should
be updated in the database.

A simple test will show you the problem:

1. Open two separate browser windows in your desktop, both displaying Client_62.jsp.

2. In Window #1, change the first name to FromWindow1 and leave the last name unchanged.
Hit Submit and everything looks fine. Hit Refresh in Window #1 and convince yourself
that the first change is saved in the database.

3. (Don’t hit Refresh in Window #2 before performing this step or you will miss the point of
the test.) In Window #2, change the last name to FromWindow2, leave the first name
unchanged, and hit Submit. Notice that, even though it hasn't changed, the first name
shown in Window #2 overrides the change made in Window #1.

4. Now hit Refresh on Window #1 and verify that the change you made there has vanished
without a trace.

This effect occurs regardless of application-server locking schemes or database isolation levels,
because it is not related to transactions or bean-instance sharing, but is simply a by-product of the
all-or-nothing set methods and the “stale” data inherent in an HTML form.

In a client-server application or simple JDBC-based web application this concurrency hole is
typically plugged through the use of “predicated updates” or time-stamp checking during the
write operation, to ensure that no other application or process has updated the database row since
the data was read and displayed to the user. If this condition is sensed, the second window
receives an error message. Typically, it then refreshes the form with updated data from the bean
(i.e., from the database) and allows the user to retry the submit.

Predicated updates for CMP beans are not yet available in WebLogic server, but unofficial
comments indicate they are in the plans for future releases.

When you are done with the page or client application, make sure the CUSTOMER table is empty;
delete the row using the ViewDB.jsp or other convenient mechanism.

88

Exercise 6.3:
A Simple Relationship in CMP 2.0
This exercise demonstrates the use of a dependent object to pass data from an entity bean with a
local interface back to a remote client. You will introduce a new EJB, Address, in the application
you are building. The exercise also introduces the concept of a relationship cmp field in
preparation for a detailed examination of relationships in the next chapter of the EJB book.

Download and Build the Example Programs

Download and extract the example directory ex06_3 and examine the contents.

The Address EJB introduced in this exercise is a fairly simple bean with four string attributes and
a primary key field. As described in the EJB book, Address is configured to have local rather than
remote interfaces. Three source files are still required to define the bean code, but the interface
names have Local rather than Remote where appropriate:

CustomerBean.java AddressBean.java Bean class

CustomerHomeRemote.java AddressHomeLocal.java Home interface

CustomerRemote.java AddressLocal.java Local and remote interfaces

This particular naming convention is not dictated by the specification, but is a reasonable way to
differentiate between the two types of interfaces. Before the advent of local interfaces, the
Remote portion of the name was typically absent. Note that a single EJB can have both sets of
interfaces.

The AddressBean.java file defines a single create method for the bean:

AddressBean.java
public abstract class AddressBean implements javax.ejb.EntityBean {

 public Integer ejbCreateAddress
 (String street, String city,
 String state, String zip)
 {
 setStreet(street);
 setCity(city);
 setState(state);
 setZip(zip);
 return null;
 }
 ...
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 89

Notice that the bean's create method does not include its primary key in the list of parameters.
Contrast this with the create method in the Customer bean:

public Integer ejbCreate(Integer id){
this.setId(id);
return null;

}

The Address EJB will demonstrate a new feature of the WebLogic 6.1 server platform, automatic
key generation using a sequence table. This feature will be discussed when you examine the
WebLogic-specific files and components.

The AddressLocal.java interface defines the get and set methods available:

AddressLocal.java
public interface AddressLocal extends javax.ejb.EJBLocalObject {
 public String getStreet();
 public void setStreet(String street);
 public String getCity();
 public void setCity(String city);
 public String getState();
 public void setState(String state);
 public String getZip();
 public void setZip(String zip);
}

Note that throws RemoteException is absent from all of the method declarations. This is a
local interface; invoking these methods on the bean does not involve RMI communication, so they
cannot throw RemoteExceptions.

Finally, the AddressHomeLocal.java file defines the Home interface for the bean:

AddressHomeLocal.java
public interface AddressHomeLocal extends javax.ejb.EJBLocalHome
{
 public AddressLocal createAddress(String street, String city,
 String state, String zip)
 throws javax.ejb.CreateException;

 public AddressLocal findByPrimaryKey(Integer primaryKey)
 throws javax.ejb.FinderException;
}

Note that the AddressHomeLocal interface returns local references as expected, and that these
methods will not throw any RemoteExceptions because the communication with the home
interface does not involve RMI calls.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

90 Buy the printed version of this book at http://www.titan-books.com

The next class to examine is the dependent-object class, AddressDO. This class is very similar to
the Name class from the previous exercise, having a constructor to set private data members and
get methods to retrieve them. Note that AddressDO implements Serializable, so it can be
passed to remote clients via RMI communication.

The Customer EJB includes a unidirectional one-to-one relationship called homeAddress
referring to an Address EJB. Chapter 7 in the EJB book covers all of the different relationship
types and will explain these terms in detail. For now, just examine the changes made to the
Customer EJB.

First, CustomerBean is modified to include the new relationship, homeAddress, as a set of
abstract get and set methods, much as any new attribute would be added:

 public abstract AddressLocal getHomeAddress();
 public abstract void setHomeAddress(AddressLocal address);

If the intention was to expose this relationship to outside callers, these same methods would
appear in the CustomerRemote interface file. For this exercise the need is not to expose the
actual relationship get and set methods, but instead to provide methods on the remote interface
that accept and return copies of the AddressDO value object:

CustomerRemote.java
public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(String street, String city,
 String state, String zip)
 throws RemoteException, CreateException, NamingException;

 public void setAddress(AddressDO address)
 throws RemoteException, CreateException, NamingException;
 public AddressDO getAddress() throws RemoteException;

 public Name getName() throws RemoteException;
 public void setName(Name name) throws RemoteException;

 public boolean getHasGoodCredit() throws RemoteException;
 public void setHasGoodCredit(boolean flag)
 throws RemoteException;

}

The new interface methods are in bold in the listing above. Note that the actual EJB interface,
AddressLocal, does not appear in these methods – they accept or return simple Java types or
AddressDO objects only.

The code implementing these new methods will not be created by the CMP generation tool, so it is
up to you to define these methods in the CustomerBean class:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 91

CustomerBean.java
public AddressDO getAddress() {

 AddressLocal addrLocal = this.getHomeAddress();

 String street = addrLocal.getStreet();
 String city = addrLocal.getCity();
 String state = addrLocal.getState();
 String zip = addrLocal.getZip();
 AddressDO addrValue = new AddressDO(street,city,state,zip);

 return addrValue;
}

The getAddress method uses the CMP-created getHomeAddress relationship method to
obtain a local reference to the Address EJB linked to this customer. (How it knows which address
to fetch is something we will cover in detail later). Accessor methods are called on this reference
to obtain the values of the fields, and an AddressDO object is constructed for return to the caller.

public void setAddress(AddressDO addrValue)
 throws CreateException, NamingException {

 String street = addrValue.getStreet();
 String city = addrValue.getCity();
 String state = addrValue.getState();
 String zip = addrValue.getZip();

 setAddress(street,city,state,zip);
}

The setAddress method that accepts an AddressDO object obtains from it the four strings it
needs, and simply calls the overloaded version of the method presented below:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

92 Buy the printed version of this book at http://www.titan-books.com

public void setAddress(String street, String city, String state,
String zip)
 throws CreateException, NamingException {

 AddressLocal addr = this.getHomeAddress();

 if (addr == null) {
 // Customer doesn't have an addr yet. Create a new one.
 InitialContext cntx = new InitialContext();
 AddressHomeLocal addrHome =
 (AddressHomeLocal)cntx.lookup("AddressHomeLocal");

 addr = addrHome.createAddress(street, city, state, zip);
 this.setHomeAddress(addr);
 } else {
 // Customer already has an address. Change its fields
 addr.setStreet(street);
 addr.setCity(city);
 addr.setState(state);
 addr.setZip(zip);
 }
}

This method is a little more complicated than you might expect because it must handle the case
where a Customer is told to set its Address to be equal to a set of values and it does not yet have a
related Address EJB. The basic result of this method, whichever branch is taken in the code, is
that the Customer will be associated with an Address EJB through the homeAddress relationship
field that has the specified four strings as field values.

Use the ant dist task to build and deploy the components and the related client programs.

Create the Required Database Objects

The Address EJB requires the following table in the database:
CREATE TABLE ADDRESS
(
 ID INT PRIMARY KEY,
 STREET CHAR(40),
 CITY CHAR(20),
 STATE CHAR(2),
 ZIP CHAR(10)
)

The relationship between the Customer EJB and the Address EJB must be reflected in the
database in some manner to make it persistent. There are at least three different ways:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 93

1. Adding a CUSTOMER_ID column to the ADDRESS table (classic approach of parent key in
child table).

2. Adding an ADDRESS_ID column to the CUSTOMER table (child key in parent table).

3. Introduction of a LINK table containing pairs of CUSTOMER_ID and ADDRESS_ID values
(required for many-to-many relationships, may be used for all relationships).

Chapter 7 will demonstrate the first and third options. Option 2 was chosen for this exercise to
demonstrate the CMP engine's ability to make a relationship persistent in this manner.

Alter the CUSTOMER table to match the new schema:
CREATE TABLE CUSTOMER
(
 ID INT PRIMARY KEY,
 LAST_NAME CHAR(20),
 FIRST_NAME CHAR(20),
 HAS_GOOD_CREDIT BIT(1),
 ADDRESS_ID INT
)

Finally, the Address EJB will be making use of an automatic key-generation facility available in
WebLogic CMP. The required elements in weblogic-cmp-rdbms-jar.xml file will be described
momentarily. The automatic key generation requires a table having the following schema:

CREATE TABLE ADDRESS_SEQUENCE
(
 SEQUENCE INT
}

Create this table and populate it with a single row having a value of 100 in the SEQUENCE column.
As Address beans are created by the container, the value in the table will increase to reflect the
next available primary key value for the bean. Access to this table uses the SERIALIZABLE
isolation level within WebLogic. Caching of values is also available.

Before proceeding, double-check that you have made the required changes to the database:

♦ New ADDRESS table

♦ ADDRESS_ID added to CUSTOMER table

♦ New ADDRESS_SEQUENCE table containing a single row

All tables other than ADDRESS_SEQUENCE should be empty before proceeding.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

94 Buy the printed version of this book at http://www.titan-books.com

Examine the Standard EJB Descriptor File

You will examine the relationship elements in the ejb-jar.xml file in detail in the next exercise. At
this point, examine the non-relationship portions of the descriptor:

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Customer</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
</entity>

Note that the <entity> elements for the Customer EJB did not change with the introduction of
the new relationship, despite the addition of the new getHomeAddress and setHomeAddress
methods in the bean. Also note that we chose to not expose the ADDRESS_ID as a cmp field in the
bean, although we could have. For this reason there is no <cmp-field> element related to the
ADDRESS_ID relationship (and no getAddressId or setAddressId methods in the bean or
the remote interface).

The Address EJB <entity> elements are fairly straightforward, defining the attributes of the
bean:

<entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>com.titan.address.AddressHomeLocal</local-home>
 <local>com.titan.address.AddressLocal</local>
 <ejb-class>com.titan.address.AddressBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 95

 <abstract-schema-name>Address</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>street</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <cmp-field><field-name>state</field-name></cmp-field>
 <cmp-field><field-name>zip</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
</entity>

Skip the relationship sections of the file. The final change is the addition of Address EJB
elements to the transaction and security sections of the <assembly-descriptor>:

<assembly-descriptor>
 <security-role>
 <role-name>Employees</role-name>
 </security-role>
 <method-permission>
 <role-name>Employees</role-name>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>AddressEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>AddressEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
</assembly-descriptor>

Examine the WebLogic-Specific Files/Components

The weblogic-ejb-jar.xml file includes information for both the CustomerEJB and the
AddressEJB in this exercise, but introduces no new elements or sections as a result of the

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

96 Buy the printed version of this book at http://www.titan-books.com

relationship between the beans. The only difference from previous exercises is the change in the
JNDI name element tag for the Address home interface:

 <local-jndi-name>AddressHomeLocal</local-jndi-name>

Because the Home interface for the Address is local, the tag is <local-jndi-name> rather than
<jndi-name>.

The weblogic-cmp-rdbms-jar.xml descriptor file contains a number of new sections and elements
in this exercise. A detailed examination of the relationship elements will wait until the next
exercise, but there are some other changes to observe and examine.

The file contains a section mapping the Address <cmp-field> attributes from the ejb-jar.xml
file to the database columns in the ADDRESS table, in addition to a new section related to the
automatic key generation used for primary key values in this bean:

<weblogic-rdbms-bean>
 <ejb-name>AddressEJB</ejb-name>
 <data-source-name>titan-dataSource</data-source-name>
 <table-name>ADDRESS</table-name>
 <field-map>
 <cmp-field>id</cmp-field>
 <dbms-column>ID</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>street</cmp-field>
 <dbms-column>STREET</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>city</cmp-field>
 <dbms-column>CITY</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>state</cmp-field>
 <dbms-column>STATE</dbms-column>
 </field-map>
 <field-map>
 <cmp-field>zip</cmp-field>
 <dbms-column>ZIP</dbms-column>
 </field-map>
 <!-- Automatically generate the value of ID in the database on
inserts using sequence table -->
 <automatic-key-generation>
 <generator-type>NAMED_SEQUENCE_TABLE</generator-type>
 <generator-name>ADDRESS_SEQUENCE</generator-name>
 <key-cache-size>10</key-cache-size>
 </automatic-key-generation>
</weblogic-rdbms-bean>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 97

The <automatic-key-generation> section within the <weblogic-rdbms-bean> element
enables this feature and provides configuration information to the CMP code-generation tool. In
this example we are using the NAMED_SEQUENCE_TABLE approach and supplying the name of
the table in the database (ADDRESS_SEQUENCE), containing a single column (SEQUENCE) and a
single row with an integer value. The <key-cache-size> element defines the number of keys
to cache in memory without requiring a database hit to update the sequence.

This key-generation scheme is only one of the options available, but it will work with any JDBC-
compliant database because it uses a table to contain the current sequence value. Other key-
generation techniques are available in WebLogic 6.1 for specific database platforms.

If the target database is Oracle, for example, the primary key can be generated using an Oracle
Sequence by specifying the name of the sequence:

 <automatic-key-generation>
 <generator-type>ORACLE</generator-type>
 <generator-name>ADDRESS_SEQ</generator-name>
 <key-cache-size>10</key-cache-size>
 </automatic-key-generation>

According to the on-line documentation, the sequence should have the same increment in the
database as the <key-cache-size> increment in the descriptor file.

If the target database is MS SQL Server, the primary key column in the table can use the
IDENTITY data type, which automatically sets the value when a row is inserted in the table. To
inform the WebLogic CMP engine that this table will be using this approach, use the following
elements to configure the key-generation facility:

 <automatic-key-generation>
 <generator-type>SQL_SERVER</generator-type>
 </automatic-key-generation>

When a bean using this key-generation approach is created, SQL Server will assign the primary
key automatically during the database insert. WebLogic will obtain the value of the key and use it
as the primary key for subsequent operations.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the titanapp directory in
the ejbbook domain. Use the redeploy task to force a re-deployment of the entire titanapp
enterprise application, or simply reboot the server to deploy the new titanejb.jar file.

Examine and Run the Client Applications

A single client Java application for this exercise demonstrates the creation of a Customer and the
use of the public getAddress/setAddress interface on the Customer to manipulate the
underlying Address EJB.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

98 Buy the printed version of this book at http://www.titan-books.com

Client_63.java
// obtain CustomerHome
Context jndiContext = getInitialContext();
Object obj = jndiContext.lookup("CustomerHomeRemote");
CustomerHomeRemote home = (CustomerHomeRemote)
javax.rmi.PortableRemoteObject.narrow(obj,CustomerHomeRemote.class);

System.out.println("Creating Customer 1..");
// create a Customer
Integer primaryKey = new Integer(1);
CustomerRemote customer = home.create(primaryKey);

The first few lines of the client program obtain a reference to the home interface for the Customer
EJB and create a single bean with a primary key value of 1. At this point in the program a row has
been created in the CUSTOMER table in the database with NULL values for first name and last
name as well as a NULL in the ADDRESS_ID column. These intermediate database states are
difficult to see during the execution of the client because they exist for only a short period of time,
but the individual transactions created by each method call to the bean cause the states to be
committed to the database after each method invocation. The JSP page version of the client
includes dumps of the CUSTOMER and ADDRESS table at each intermediate point in the program.

// create an address data object
System.out.println("Creating AddressDO data object..");
AddressDO address = new AddressDO("1010 Colorado",
 "Austin", "TX", "78701");

// set address in Customer bean
System.out.println("Setting Address in Customer 1...");
customer.setAddress(address);

This section creates an AddressDO data object using its constructor, and calls the setAddress
method on the Customer remote interface. Turn back to the code examined earlier in this
exercise to review the logic within the CustomerBean setAddress method to create or update
the Address EJB related to the Customer.

After this invocation there will be a new row in the ADDRESS table in the database, and the
primary key of that row will be in the ADDRESS_ID column in the CUSTOMER table.

System.out.println("Acquiring Address do from Customer 1...");
address = customer.getAddress();

System.out.println("Customer 1 Address data: ");
System.out.println(address.getStreet());
System.out.println(address.getCity()+","+

 address.getState()+" "+
 address.getZip());

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 99

The client code now retrieves the customer’s address by calling the getAddress method on the
Customer remote interface to obtain the AddressDO data object. Don’t be confused by the fact
that the client program uses the same variable address again. It is obtaining a new AddressDO
object created by the getAddress method on the CustomerBean class, serialized, sent via RMI
to the client, and deserialized for use in the client program.

// create a new address
System.out.println("Creating new AddressDO data object..");
address = new AddressDO("1600 Pennsylvania Avenue NW",

"DC", "WA", "20500");

// change customer's address
System.out.println("Setting new Address in Customer 1...");
customer.setAddress(address);

This section creates a new AddressDO data object on the client and again calls the setAddress
method on the Customer remote interface. Because the Customer is already linked to an
Address EJB, the setAddress code in CustomerBean will modify the fields in that Address
bean rather than creating a new one. After the setAddress invocation, the database row for the
associated Address EJB will reflect the new values, but there should be no other changes to the
database.

address = customer.getAddress();
System.out.println("Customer 1 Address data: ");
System.out.println(address.getStreet());
System.out.println(address.getCity()+","+

 address.getState()+" "+
 address.getZip());

// remove Customer to clean up
System.out.println("Removing Customer 1...");
customer.remove();

The final section retrieves another copy of the AddressDO data object, reports its values, and
removes the Customer bean. There is a problem with this code, however! It does not delete the
Address row in the database when the parent Customer is removed. You will learn how to
configure CMP beans for cascade deletion in Exercise 7.3, but until then you will need to clean up
these rows manually after you run this client program.

Examine and Run the Client JSP Pages

The Client_63.jsp page follows exactly the steps outlined above, with the addition of data dumps
for the CUSTOMER and ADDRESS tables after each significant step, to make visible the database
changes produced by each step.

The CUSTOMER and ADDRESS tables must be empty before proceeding to the next exercise.

101

Exercises for Chapter 7

102

Exercise 7.1:
Entity Relationships in CMP 2.0: Part 1
This exercise begins the construction of a complex set of interrelated entity beans defined
throughout Chapter 7 of the EJB book. We will explore relationship-modeling features of CMP
2.0 in this exercise and the two that follow it.

Exercise 7.1 starts by defining a few simple relationships centered on the Customer EJB.

Download and Build the Example Programs

Download and extract the example directory ex07_1 and examine the contents.

To simplify the example programs and allow more straightforward get and set functions for
related entity beans, the Customer EJB has been converted. It now has local rather than remote
interfaces. The following changes were required:

♦ CustomerHomeRemote became CustomerHomeLocal

♦ CustomerRemote became CustomerLocal

♦ RemoteException was removed from the throws clauses of interface methods

♦ Descriptor elements in ejb-jar.xml were changed to the “local” versions:

<ejb-name>CustomerEJB</ejb-name>
<home>com.titan.customer.CustomerHomeRemote</home>
<remote>com.titan.customer.CustomerRemote</remote>
<ejb-class>com.titan.customer.CustomerBean</ejb-class>

…became…
<ejb-name>CustomerEJB</ejb-name>
<local-home>com.titan.customer.CustomerHomeLocal</local-home>
<local>com.titan.customer.CustomerLocal</local>
<ejb-class>com.titan.customer.CustomerBean</ejb-class>

♦ The JNDI name element in weblogic-ejb-jar.xml was changed to the local version:
<jndi-name>CustomerHomeRemote</jndi-name>

…became…
<local-jndi-name>CustomerHomeLocal</local-jndi-name>

This change to “local” interfaces allows methods on the CustomerLocal interface to include
local references as parameters or return types, something CustomerRemote methods cannot do.
CustomerLocal methods can therefore accept and return references to other local entity beans
such as Address, CreditCard, and Phone, which you will be creating in this exercise. It also
removes the need for specialized data object classes (AddressDO) and overloaded set methods

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 103

that accept primitive parameters instead of references to other beans. This streamlining
simplifies the entity bean significantly and allows you to concentrate primarily on the
relationship-modeling features in CMP 2.0 instead of spending your time creating more data
objects and specialized get and set methods for them in the Customer bean.

The one downside to making the Customer EJB local is that client Java programs will no longer
be able to acquire a remote reference to the bean and make RMI calls to it from outside the
WebLogic server JVM. Designers often use session beans with remote interfaces as a “façade” for
entity beans with local interfaces. Rather than introduce this complexity, we’ll take advantage of
the fact that servlets and JSP pages within the same .ear file can use local entity beans without
restriction. All of the exercises in Chapter 7 will therefore use JSP pages rather than remote Java
client applications.

The downloadable code includes a revised version of the original Cabin EJB from Exercise 4.1. It
has been modified to use local rather than remote interfaces, and relationships with other beans
are not present.

The Customer EJB in this exercise includes the following relationship definitions:

♦ homeAddress (a reference to an Address bean)

♦ creditCard (a reference to a CreditCard bean)

♦ phoneNumbers (a Collection of Phone beans)

The methods in the CustomerLocal interface and CustomerBean class which were added to
support these relationships will be described when you examine the standard EJB descriptor file.

Use the ant dist task to build and deploy the components and the related client programs.

Create the Required Database Objects

You need two new tables to support the CreditCard and Phone EJBs introduced in this exercise:
CREATE TABLE CREDIT_CARD
(
 ID INT PRIMARY KEY,
 EXP_DATE DATE,
 NUMBER CHAR(20),
 NAME CHAR(40),
 ORGANIZATION CHAR(20),
 CUSTOMER_ID INT
}

CREATE TABLE PHONE
(
 ID INT PRIMARY KEY,
 NUMBER CHAR(20),
 TYPE INT,
 CUSTOMER_ID INT
}

Note that both of these tables contain CUSTOMER_ID, a foreign key related to the ID column in
the CUSTOMER table.

 Important note for Oracle users only: These create scripts will fail in Oracle because they use
the reserved word NUMBER as a column name. You must modify the CREDIT_CARD and

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

104 Buy the printed version of this book at http://www.titan-books.com

PHONE tables slightly to rename the NUMBER columns to CARD_NUMBER and PHONE_NUMBER,
respectively. You must also edit weblogic-cmp-rdbms-jar.xml to reflect these column-name
changes in the related <field-map> elements for the CreditCard and Phone EJBs –- in this
exercise and all subsequent exercises.

You will be using automatic key generation for both of the new EJBs. Unless you are using the
Oracle-specific or SQL Server-specific approach to key generation, this exercise also requires two
new sequence tables:

CREATE TABLE CREDIT_CARD_SEQUENCE
(
 SEQUENCE INT
}

CREATE TABLE PHONE_SEQUENCE
(
 SEQUENCE INT
}

Create a single row in each of these tables containing an integer value in the SEQUENCE column.

All non-sequence tables in the database should be empty at the start of the exercise.

Examine the Standard EJB Descriptor File

The standard ejb-jar.xml descriptor file contains important information about the relationships
between beans in the application. As described in the EJB book, each relationship is defined in a
single <ejb-relation> element with two <ejb-relationship-role> elements, one for
each “direction” in the relationship:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 105

<ejb-relation>
 <ejb-relation-name>Customer-HomeAddress</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-Address
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>homeAddress</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Address-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
</ejb-relation>

This relationship is an example of a uni-directional one-to-one relationship. It has a multiplicity
of “one” on both ends of the relationship and a <cmr-field-name> defined on only one end of
the relationship. The specific role names are not important – except to the extent they help
document the role each EJB plays in the relationship. The names are also used to link these
elements with corresponding elements in the WebLogic-specific descriptor file discussed in a
moment.

The presence of a <cmr-field> in the Customer EJB side of the relationship requires the
existence of a properly-named set of get and set functions in the CustomerBean and optionally
in the CustomerLocal interface. For the Customer-HomeAddress relationship, you must define
these in the CustomerBean:

 public abstract AddressLocal getHomeAddress();
 public abstract void setHomeAddress(AddressLocal address);

Corresponding method definitions should also be defined in the CustomerLocal interface:
 public AddressLocal getHomeAddress();
 public void setHomeAddress(AddressLocal address);

The Customer-CreditCard relationship is also defined in the ejb-jar.xml file as a one-to-one
relationship. Note that in this relationship both sides have a <cmr-field> element defined,
indicating that this is a bi-directional relationship. Both entity beans must therefore have get and

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

106 Buy the printed version of this book at http://www.titan-books.com

set functions defined for this relationship, but otherwise it is very similar to the Customer-
HomeAddress relationship.

The final relationship defined in the ejb-jar.xml is the Customer-Phones relationship:
<ejb-relation>
 <ejb-relation-name>Customer-Phones</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-many-Phone-numbers
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>phoneNumbers</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Phone-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>PhoneEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
</ejb-relation>

The multiplicity elements brand this association as a one-to-many relationship, with one
Customer bean potentially related to many Phone beans. In addition, the lack of a <cmr-field>
element on the Phone EJB side of the relationship indicates that it is uni-directional. The
Customer EJB requires a matching set of get and set functions for the phoneNumbers cmr field:

public abstract Collection getPhoneNumbers();
public abstract void setPhoneNumbers(Collection phones);

Do not confuse the location and presence of cmr-related get and set functions and fields in entity
beans with the physical database keys and foreign keys required to implement these relationships.
They are not the same. For example, even though this relationship will eventually be
implemented using a CUSTOMER_ID foreign key in the PHONE table, the Phone EJB is not
required to expose this relationship via a customer cmr field. The container-specific descriptor
file will provide the required mapping of this relationship to the correct foreign keys and primary
keys.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 107

A number of convenience methods were also created in the CustomerBean to help manipulate
the contents of the phoneNumbers relationship:

public void addPhoneNumber(String number, byte type)
throws NamingException, CreateException {

 InitialContext jndiEnc = new InitialContext();
 PhoneHomeLocal phoneHome =
 (PhoneHomeLocal)(jndiEnc.lookup("PhoneHomeLocal"));

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = this.getPhoneNumbers();
 phoneNumbers.add(phone);

}

The addPhoneNumber method accepts the desired phone number and type as parameters,
creates a Phone EJB using these values, retrieves the current collection of Phone beans related to
this Customer, and adds the new Phone bean to the collection.

Note that the result of the jndiEnc.lookup() call is simply cast to the desired class, which is
valid for local interfaces.

public void updatePhoneNumber(String number,byte typeToUpdate) {

 Collection phoneNumbers = this.getPhoneNumbers();
 Iterator iterator = phoneNumbers.iterator();
 while(iterator.hasNext()){
 PhoneLocal phone = (PhoneLocal)iterator.next();
 if (phone.getType() == typeToUpdate) {
 phone.setNumber(number);
 break;
 }
 }
}

The updatePhoneNumber method accepts the desired new phone number and the specific type
of the phone number to change. This method retrieves the collection of Phone beans related to
the Customer, searches the collection to find a bean with the desired type, and applies the new
number to the matching bean.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

108 Buy the printed version of this book at http://www.titan-books.com

public void removePhoneNumber(byte typeToRemove) {

 Collection phoneNumbers = this.getPhoneNumbers();
 Iterator iterator = phoneNumbers.iterator();
 while(iterator.hasNext()){
 PhoneLocal phone = (PhoneLocal)iterator.next();
 if (phone.getType() == typeToRemove) {
 phoneNumbers.remove(phone);
 break;
 }
 }

}

The removePhoneNumber method searches the collection of related Phone beans for the specific
type and removes the Phone bean from the collection. This operation unlinks the Phone bean
from the Customer, but does not delete the row from the Phone table.

For the convenience of client applications, another method iterates through the collection and
returns a collection of String objects representing the data in the related Phone beans.

Examine the WebLogic-Specific Files/Components

The database-mapping information for the relationships defined in the ejb-jar.xml file must be
defined in the WebLogic-specific CMP descriptor file. Three relationships are defined in the ejb-
-jar.xml file, so there are also three relationship sections in the weblogic-cmp-rdbms-jar.xml file.

First, examine the mapping information for the Customer-HomeAddress relationship:
<weblogic-rdbms-relation>
 <relation-name>Customer-HomeAddress</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>Customer-has-a-Address
 </relationship-role-name>
 <column-map>
 <foreign-key-column>ADDRESS_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

Notice in this section:

♦ The <relation-name> element in this file matches the <ejb-relation-name> element
from the ejb-jar.xml file.

♦ The <relationship-role-name> element in this file matches the <ejb-relationship-
role-name> element from the ejb-jar.xml file.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 109

♦ This descriptor file includes only one side of the relationship, not both, because this
relationship was implemented with an ADDRESS_ID foreign key in the CUSTOMER table.

The second section provides mapping information for the Customer-CreditCard relationship:
<weblogic-rdbms-relation>
 <relation-name>Customer-CreditCard</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>CreditCard-belongs-to-Customer
 </relationship-role-name>
 <column-map>
 <foreign-key-column>CUSTOMER_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

As in the preceding section, the descriptor needs to specify only one side of the relationship to
provide mapping information, the CreditCard side, because the CREDIT_CARD table contains the
linking CUSTOMER_ID foreign key. Placing the parent key (Customer ID) in the child table
(CREDIT_CARD) is the normal technique for one-to-one and one-to-many relationships.

Finally, the third section provides mapping information for the Customer-Phones relationship:
<weblogic-rdbms-relation>
 <relation-name>Customer-Phones</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>Phone-belongs-to-Customer
 </relationship-role-name>
 <column-map>
 <foreign-key-column>CUSTOMER_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

This section defines mapping information for the Phone side of the relationship alone because the
relationship is implemented in the database using a CUSTOMER_ID foreign key in the PHONE
table. Note how closely this section resembles the Customer-CreditCard section you examined
earlier. Both relationships use parent keys in the child table for linking the beans, and the
differences in multiplicity do not affect the contents of the WebLogic CMP descriptor file.

The weblogic-ejb-jar.xml descriptor file contains the typical elements for each EJB, defining the
JNDI home name, bean cache information, and other WebLogic-specific information unrelated to
the CMP process.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

110 Buy the printed version of this book at http://www.titan-books.com

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the titanapp directory in
the ejbbook domain. Use the redeploy task to force a re-deployment of the entire titanapp
enterprise application, or simply reboot the server to deploy the new titanejb.jar file.

Use the console to verify that CustomerHomeLocal, AddressHomeLocal,
CreditCardHomeLocal, and PhoneHomeLocal are registered in the JNDI tree.

Examine and Run the Client JSP Pages

Three client JSP pages provided in the download demonstrate the Customer relationships created
in this exercise. The ant dist task copied them to the webapp directory in the titanapp exploded
.ear file, making them available using the standard URLs:

http://servername:7001/webapp/Client_71.jsp

Client_71.jsp

The Client_71 JSP page demonstrates the simple one-to-one relationship between the Customer
bean and the CreditCard bean. First, it looks up the necessary home interfaces and creates a
single Customer bean:

Context jndiContext = getInitialContext();
Object obj = jndiContext.lookup("CustomerHomeLocal");
CustomerHomeLocal customerhome = (CustomerHomeLocal)

PortableRemoteObject.narrow(obj, CustomerHomeLocal.class);

obj = jndiContext.lookup("CreditCardHomeLocal");
CreditCardHomeLocal cardhome = (CreditCardHomeLocal)

PortableRemoteObject.narrow(obj, CreditCardHomeLocal.class);

out.print("<H2>Creating Customer 71</H2>");

Integer primaryKey = new Integer(71);
CustomerLocal customer = customerhome.create(primaryKey);
customer.setName(new Name("Smith","John"));

Next, it creates a single CreditCard bean:
Calendar now = Calendar.getInstance();
CreditCardLocal card = cardhome.create(now.getTime(),
 "370000000000001", "John Smith", "O'Reilly");

Note that the create method for the CreditCard EJB does not require a primary key as a
parameter. The primary key will be generated automatically by the WebLogic CMP engine using
the CREDIT_CARD_SEQUENCE table.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 111

Next, the JSP page calls the setCreditCard method on the Customer bean to link the two
objects:

customer.setCreditCard(card);

Because this is a bi-directional one-to-one relationship, it could just as easily use the
setCustomer method on the CreditCard bean to link the two objects, and achieve the same
effect on the beans and in the database.

The next section tests the bi-directional nature of the relationship by traversing the relationship
both ways and reporting information on the related object:

String cardname = customer.getCreditCard().getNameOnCard();
out.print("customer.getCreditCard().getNameOnCard()="
 +cardname+"
");

Name name = card.getCustomer().getName();
String custfullname = name.getFirstName()+" "+name.getLastName();
out.print("card.getCustomer().getName()="+custfullname+"
");

The references returned by traversing relationships such as this are identical to the references
returned by looking up the bean using a finder in the local home interface. In other words, the
following expression would evaluate as true:

card.getCustomer().isIdentical(
 custhome.findByPrimaryKey(new Integer(71))

In a one-to-one relationship such as this, what happens to one side of the relationship always
affects the other side. The last section of the page demonstrates this interdependence by
unlinking the beans using the CreditCard side of the relationship and verifying that the
Customer's getCreditCard method also reflects the loss of the relationship between the beans:

card.setCustomer(null);

CreditCardLocal newcardref = customer.getCreditCard();
if (newcardref == null) {
 out.print("Card is properly unlinked from customer bean
");
} else {
 out.print("Whoops, customer still thinks it has a card!
");
}

Notice that this code did not remove the CreditCard bean, so it still exists in the database but is no
longer linked to a Customer.

Experiment with this JSP page and test additional scenarios to better understand one-to-one
relationships of this type. You should edit the JSP page in the /ex07_1/jsp directory and use the
ant dist target to move the modified version to the webapp directory in the ejbbook domain.
There is no need to reboot the server – the next time you hit the page the server will re-compile
the JSP and present the new contents.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

112 Buy the printed version of this book at http://www.titan-books.com

The next client JSP page expects Customer 71 to exist, so make sure it exists in the database
before moving on.

Client_72.jsp

The Client_72.jsp example page illustrates many of the same concepts Client_71 does, but focuses
on the Customer-HomeAddress relationship. This is a uni-directional relationship, so the
Customer EJB has the cmr-field methods getHomeAddress and setHomeAddress, but the
Address EJB does not have corresponding setCustomer and getCustomer methods as the
CreditCard EJB did in the previous example.

The page creates an Address bean and attaches it to the Customer if it does not already have one,
then proceeds to create a new Address and perform the setHomeAddress method again with the
new address. It is important to recognize that this second call to setHomeAddress effectively
orphans the first Address EJB; the Customer will now be linked to the second Address object
only.

There is a big difference between

♦ getting the Address reference from the Customer and manipulating its cmp fields directly,
and

♦ creating a new Address bean and calling the setHomeAddress method on the Customer.

For example, this code modifies the data within the Address bean already linked to the Customer,
essentially changing only one column (STREET) in the ADDRESS table to reflect the new value:

AddressLocal addr = customer.getHomeAddress();
addr.setStreet("700 Main Street");

…whereas this code, taken from Client_72.jsp, creates a completely new Address EJB with the
data passed to the createAddress constructor, inserts a new row in the ADDRESS table, and
modifies the ADDRESS_ID column in the CUSTOMER table representing this Customer bean:

AddressLocal addr = addresshome.createAddress(
 "700 Main Street","St. Paul","MN","55302");
customer.setHomeAddress(addr);

 Bottom line: Don’t call relationship set methods to modify the values in the related bean. Get
a reference to the related bean and use its set methods to modify its cmp-field values directly.

The next example page does not require anything beyond the existence of the Customer 71 record
in the database, so feel free to experiment with Client_72.jsp to learn more about the two
techniques described above.

Client_73.jsp

The final client page in this exercise demonstrates the proper use of one-to-many relationships
such as the Customer-Phones relationship. Being a uni-directional one-to-many relationship, the

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 113

Customer EJB has a cmr field called phoneNumbers with access methods getPhoneNumbers
and setPhoneNumbers created by the CMP code-generation process.

Because the Customer EJB includes helper methods (addPhoneNumber, updatePhoneNumber,
etc.), the client JSP page may use these methods rather than manipulating the phone collection
directly. In other words, this simple code in the JSP page…

customer.addPhoneNumber("800-333-3333",(byte)2);

…eliminates the need for all of this code in the client program:
UserTransaction tran = (UserTransaction)
 jndiContext.lookup("java:comp/UserTransaction");
try {
 tran.begin();
 Collection phones = customers.getPhoneNumbers();
 PhoneLocal newphone = phonehome.create(
 ("800-333-3333",(byte)2);
 phones.add(newphone);
 tran.commit();
}
catch (Exception e) {
 e.printStackTrace();
 tran.rollback();
}

Obviously, helper methods substantially reduce client code. Note that essentially the same code
appears in the addPhoneNumber helper method itself, but that the helper method does not have
any transaction-related code:

public void addPhoneNumber(String number, byte type)
throws NamingException, CreateException {

 InitialContext jndiEnc = new InitialContext();
 PhoneHomeLocal phoneHome =
 (PhoneHomeLocal)(jndiEnc.lookup("PhoneHomeLocal"));

 PhoneLocal phone = phoneHome.create(number,type);

 Collection phoneNumbers = this.getPhoneNumbers();
 phoneNumbers.add(phone);

}

The EJB container will not allow manipulation of a relationship collection (including iteration
through the collection) outside the context of a transaction. This restriction explains why the
client-based version required explicit transaction creation and commitment, with all collection
manipulation done within the transaction.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

114 Buy the printed version of this book at http://www.titan-books.com

Why doesn’t the helper method (addPhoneNumber) also require an explicit transaction?
Because it uses declarative transactions, as specified by these elements in the ejb-jar.xml file:

 <container-transaction>
 <method>
 <ejb-name>CustomerEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 ...
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

We’ve declared that all methods in the CustomerEJB will require a transaction, so when the
addPhoneNumber method is entered, the container automatically creates a transaction (unless
one is already associated with the relevant thread) and commits it on exit from the method if the
operation was successful (i.e., no exception was thrown).

Chapter 14 in the EJB book discusses transactions in more detail and explores the nuances of
explicit versus declarative transactions. For now, the example code will take advantage of
declarative transactions and helper methods to simplify greatly the code in our client JSP page.

The Client_73 page performs the following operations:

1. Locates the Customer 71 EJB and reports the current contents of the phoneNumbers
collection using the getPhoneList helper function

2. Adds a new Phone EJB to the collection using the addPhoneNumber helper method

3. Reports on the contents of the phone collection again

4. Adds an additional phone of a different “type” to the collection

5. Reports on the contents of the phone collection

6. Uses the updatePhoneNumber helper method to update the type=1 phone number in the
collection to have a different “number” value

7. Reports on the contents of the phone collection

8. Uses the removePhoneNumber helper method to remove a phone number, by type, from the
collection of related phones for this Customer

9. Reports on the contents of the phone collection

10. Displays the contents of the CUSTOMER and PHONE tables

Note that the removePhoneNumber method removes the link between the Customer and the
Phone bean, but does not actually delete the bean from the database. We’ve orphaned yet another
EJB, just like the orphaned Address beans from the previous client program.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 115

We invite the ambitious reader to create an additional helper method on the Customer EJB that
removes the bean from the collection (unlinking it) and also removes the bean itself (deletes the
Phone from the database). The code would look something like this:

public void removePhoneNumberWithDelete(byte typeToRemove)
throws javax.ejb.RemoveException {

Collection phoneNumbers = this.getPhoneNumbers();
Iterator iterator = phoneNumbers.iterator();

while(iterator.hasNext()){
 PhoneLocal phone = (PhoneLocal)iterator.next();
 if (phone.getType() == typeToRemove) {

phoneNumbers.remove(phone);
phone.remove();
break;

 }

}
}

The bold lines are the only difference from the existing removePhoneNumber helper method.
Don’t forget to modify the CustomerLocal interface to include this method declaration as well.

Modify the Client_73.jsp file to use this new helper method instead of removePhoneNumber,
and verify that the program successfully deletes the phone number from the database as well as
removing it from the phoneNumbers collection.

The non-sequence workbook tables should be empty before proceeding to next exercise.

116

Exercise 7.2:
Entity Relationships in CMP 2.0: Part 2
This exercise demonstrates the remaining four entity-bean relationship types:

♦ Many-to-One Unidirectional (Cruise-Ship)

♦ One-to-Many Bidirectional (Cruise-Reservation)

♦ Many-to-Many Bidirectional (Customer-Reservation)

♦ Many-to-Many Unidirectional (Cabin-Reservation)

Download and Build the Example Programs

All entity beans participating in relationships must be in the same .jar file.

This exercises re-introduces the Cabin EJB, with a new relationship to the Reservation EJB. The
Cabin EJB has also been converted to be a local bean in these exercises.

Create the Required Database Objects

The following tables must be present in the database for the example programs to operate:
CREATE TABLE SHIP
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 TONNAGE DECIMAL (8,2)
)

CREATE TABLE CRUISE
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 SHIP_ID INT
)

CREATE TABLE RESERVATION
(
 ID INT PRIMARY KEY,
 CRUISE_ID INT,
 AMOUNT_PAID DECIMAL (8,2),
 DATE_RESERVED DATE
)

CREATE TABLE
RESERVATION_CUSTOMER_LINK
(
 RESERVATION_ID INT,
 CUSTOMER_ID INT,
)

CREATE TABLE
RESERVATION_CABIN_LINK
(
 RESERVATION_ID INT,
 CABIN_ID INT,
)

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 117

In addition, the Cruise and Reservation beans will be using automatic sequencing for primary
keys, so the following sequence tables should also be created and populated with a single row:

CREATE TABLE CRUISE_SEQUENCE
{
 SEQUENCE INT
}

CREATE TABLE RESERVATION_SEQUENCE
{
 SEQUENCE INT
}

Examine the Standard EJB Descriptor File

The standard ejb-jar.xml file defines the relationships between the beans for this exercise. Each
relationship is defined in a single <ejb-relation> element with two <ejb-relationship-
role> elements, one for each “direction” of the relationship.

Many-to-One Unidirectional (Cruise-Ship)
<ejb-relation>
 <ejb-relation-name>Cruise-Ship</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cruise-has-a-Ship
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>CruiseEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>ship</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Ship-has-many-Cruises
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>ShipEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
</ejb-relation>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

118 Buy the printed version of this book at http://www.titan-books.com

The Cruise-Ship relationship is a Many-to-One Unidirectional relationship because the
multiplicity on the Cruise side of the relationship is “many” and only one side has a <cmr-
field> element. Therefore, the Cruise bean must have methods defined for the ship attribute:

public abstract ShipLocal getShip();
public abstract void setShip(ShipLocal ship);

Corresponding method definitions are also placed in the CruiseLocal interface:

public ShipLocal getShip();
public void setShip(ShipLocal ship);

The Ship bean has no methods to allow access to the list of cruises related to a given ship because
this relationship is unidirectional.

One-to-Many Bidirectional (Cruise-Reservation)
<ejb-relation>
 <ejb-relation-name>Cruise-Reservation</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cruise-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>CruiseEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>reservations</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-a-Cruise
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>cruise</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 119

The Cruise-Reservation relationship defines <cmr-field> elements for both sides of the
relationship, making it bidirectional. Because the multiplicity is one-to-many, the <cmr-field>
element on the Cruise side is actually a collection of related Reservation objects.

The presence of <cmr-field> elements on both sides requires the existence of related get and
set methods on both the Cruise and Reservation beans. The methods on the Cruise bean are:

public abstract void setReservations(Collection res);
public abstract Collection getReservations();

The method definitions on the CruiseLocal interface are:

public void setReservations(Collection res);
public Collection getReservations();

The methods on the Reservation bean are:
public abstract CruiseLocal getCruise();
public abstract void setCruise(CruiseLocal cruise);

And the related ReservationLocal interface method definitions are:

public CruiseLocal getCruise();
public void setCruise(CruiseLocal cruise);

Many-to-Many Bidirectional (Customer-Reservation)
<ejb-relation>
 <ejb-relation-name>Customer-Reservation</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>reservations</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

120 Buy the printed version of this book at http://www.titan-books.com

 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-many-Customers
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>customers</cmr-field-name>
 <cmr-field-type>java.util.Set</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

Both sides of the relationship are defined with “many” multiplicity and have <cmr-field>
elements, so this is a many-to-many bidirectional relationship. As described in the EJB book, the
use of a java.util.Set field type, rather than a Collection field type for the customer's cmr
field, indicates to the container that we do not want duplicate Customer beans in our collection.

The presence of <cmr-field> elements on both sides requires the existence of related get and
set methods on both the Customer and Reservation beans. The methods on the Customer bean
are:

public abstract Collection getReservations();
public abstract void setReservations(Collection reservations);

The method definitions on the CustomerLocal interface are:

public Collection getReservations();
public void setReservations(Collection reservations);

The methods on the Reservation bean are:
public abstract Set getCustomers();
public abstract void setCustomers(Set customers);

And the related ReservationLocal interface method definitions are:

public Set getCustomers();
public void setCustomers(Set customers);

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 121

Many-to-Many Unidirectional (Cabin-Reservation)
<ejb-relation>
 <ejb-relation-name>Cabin-Reservation</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Cabin-has-many-Reservations
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>CabinEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Reservation-has-many-Cabins
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <relationship-role-source>
 <ejb-name>ReservationEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>cabins</cmr-field-name>
 <cmr-field-type>java.util.Set</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

Both sides of the relationship are defined with “many” multiplicity, but only the Reservation side
of the relationship has a <cmr-field> element, making this a many-to-many unidirectional
relationship. The Reservation bean therefore requires these get and set methods:

public abstract Set getCabins();
public abstract void setCabins(Set cabins);

…And the related method definitions in the ReservationLocal interface are:

public Set getCabins();
public void setCabins(Set customers);

The same warning applies in this exercise as in the last exercise: Do not confuse the location and
presence of cmr-related get and set functions and <cmr-field> elements in bean definitions
with the physical database schema required to implement these relationships. The WebLogic-
specific descriptor file defines the physical mapping, while this standard ejb-jar.xml file defines
only the logical relationships between the beans.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

122 Buy the printed version of this book at http://www.titan-books.com

Examine the WebLogic-Specific Files/Components

The database-mapping information for the relationships defined in the ejb-jar.xml file must be
defined in the WebLogic-specific CMP descriptor file. Four new relationships are defined in the
ejb-jar.xml file, so there are also four new relationship sections in the
weblogic-cmp-rdbms-jar.xml file.

Many-to-One Unidirectional (Cruise-Ship)

The Cruise-Ship relationship is implemented by a SHIP_ID foreign key in each row in the
CRUISE table:

<weblogic-rdbms-relation>
 <relation-name>Cruise-Ship</relation-name>
 <weblogic-relationship-role>

 <relationship-role-name>Cruise-has-a-Ship
 </relationship-role-name>

 <column-map>
<foreign-key-column>SHIP_ID</foreign-key-column>
<key-column>ID</key-column>

 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

One-to-Many Bidirectional (Cruise-Reservation)

The Cruise-Reservation relationship is implemented by a CRUISE_ID foreign key in each row in
the RESERVATION table:

<weblogic-rdbms-relation>
 <relation-name>Cruise-Reservation</relation-name>
 <weblogic-relationship-role>
 <relationship-role-name>Reservation-has-a-Cruise
 </relationship-role-name>
 <column-map>
 <foreign-key-column>CRUISE_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 123

Many-to-Many Bidirectional (Customer-Reservation)

Many-to-Many relationships require a separate “link” table containing the key for each side of the
relationship. The column names and name of the link table are defined in this section of the
weblogic-cmp-rdbms-jar.xml descriptor:

<weblogic-rdbms-relation>
 <relation-name>Customer-Reservation</relation-name>
 <table-name>RESERVATION_CUSTOMER_LINK</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>Customer-has-many-Reservations
 </relationship-role-name>
 <column-map>
 <foreign-key-column>CUSTOMER_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>Reservation-has-many-Customers
 </relationship-role-name>
 <column-map>
 <foreign-key-column>RESERVATION_ID
 </foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

The following diagram depicts how the RESERVATION_CUSTOMER_LINK table connects a specific
CUSTOMER row and RESERVATION row in the database, thereby linking the beans these rows
represent:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

124 Buy the printed version of this book at http://www.titan-books.com

Figure 33:Link table used to implement Customer-Reservation relationship

Note that there is no primary key in the link table, nor is there any code in either bean to query or

manipulate rows in this table explicitly. The CMP-related code implements the get and set
methods defined on each side of the relationship and performs all database updates automatically
whenever relationship change occurs.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 125

Many-to-Many Unidirectional (Cabin-Reservation)

The Cabin-Reservation relationship is also a many-to-many relationship, requiring a separate
“link” table containing references to both sides of the relationship. The fact that the relationship
is unidirectional does not affect the physical mapping of the relationship:

<weblogic-rdbms-relation>
 <relation-name>Cabin-Reservation</relation-name>
 <table-name>RESERVATION_CABIN_LINK</table-name>
 <weblogic-relationship-role>
 <relationship-role-name>Cabin-has-many-Reservations
 </relationship-role-name>
 <column-map>
 <foreign-key-column>CABIN_ID</foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
 <weblogic-relationship-role>
 <relationship-role-name>Reservation-has-many-Cabins
 </relationship-role-name>
 <column-map>
 <foreign-key-column>RESERVATION_ID
 </foreign-key-column>
 <key-column>ID</key-column>
 </column-map>
 </weblogic-relationship-role>
</weblogic-rdbms-relation>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

126 Buy the printed version of this book at http://www.titan-books.com

Finally, the weblogic-cmp-rdbms-jar.xml file also defines the basic mapping of the new entity
beans to their respective tables, and defines the automatic-sequence parameters for the Cruise
and Reservation beans.

It is instructive at this point to step back and consider the total amount of descriptor information
required to define the eight entity beans in this exercise and the various relationships between
them. The total size of the ejb-jar.xml file at this point is approximately 440 lines and the
weblogic-cmp-rdbms-jar.xml file is over 350 lines. While these counts include a fair amount of
white space and boilerplate, it is not excessive, so they probably represent a reasonable size-per-
bean expectation for EJB-based systems using CMP persistence.

For example, a system with 100 beans (not uncommon for a real-life system) might be expected to
have an ejb-jar.xml file of 5,000-6,000 lines and a WebLogic-specific weblogic-cmp-rdbms-
jar.xml file of perhaps 4,000-5,000 lines, depending on the number of relationships. Contrast
this with the amount of custom Java code required to implement all of the persistence logic for
the beans and their relationships, and the advantage of CMP 2.0 becomes much more evident.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the ejbbook domain.
Use the redeploy task to force a re-deployment of the entire titanapp enterprise application, or
simply reboot the server to deploy the new titanejb.jar file.

Use the console to verify that all of the new beans are properly deployed by checking for their
home interfaces in the JNDI tree.

Examine and Run the Client JSP Pages

This exercise includes a large number of client JSP pages which demonstrate the relationships
between the entity beans. The ant dist task copied them to the webapp directory in the titanapp
exploded .ear file, making them available using the standard URLs:

http://servername:7001/webapp/Client_75.jsp

The following list summarizes the purpose of the example JSP pages; more detail follows:

♦ Client_75.jsp – Example demonstrating the Cruise/Ship relationship, including the sharing of
a reference (see EJB Book Figure 7-12)

♦ Client_76a.jsp – Example demonstrating the Cruise/Reservation relationship, including the
use of set to modify the reservations associated with a Cruise (see Figure 7-14)

♦ Client_76b.jsp – Example demonstrating the Cruise/Reservation relationship, including the
use of addAll to modify the Reservations associated with a Cruise (Figure 7-15)

♦ Client_77a.jsp – Example demonstrating the Customer/Reservation relationship, including
the use of addAll to modify the Customers for a Reservation (Figure 7-17)

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 127

♦ Client_77b.jsp – Example demonstrating the Customer/Reservation relationship, including
the use of setCustomers to modify the Customers for a Reservation (Figure 7-18)

♦ Client_77c.jsp – Example demonstrating the Cabin/Reservation relationship, including the
removal of Cabins from the Reservation using an iterator (Figure 7-20)

♦ Client_77d.jsp – Example demonstrating the Cabin/Reservation relationship, including the
use of setCabins to modify the Cabins for a Reservation

Client_75.jsp

This example demonstrates the Cruise/Ship relationship, including the sharing of a reference (see
EJB Book Figure 7-12).

First, the example creates two Ship beans and an array of six Cruise beans. The first three Cruise
beans are linked to Ship A and the last three are linked with Ship B. This section of code
demonstrates some properties of relationship cmr fields:

ShipLocal newship = cruises[4].getShip();
cruises[1].setShip(newship);

The fourth Cruise bean is asked for a reference to its related Ship bean (which should be Ship B)
and this reference is used in a call to the setShip method on the first Cruise bean. This
operation links the first Cruise bean to the Ship B bean rather than the Ship A bean, as the output
will show.

Note that you cannot run this example twice without generating a duplicate-key problem on the
SHIP table because the program attempts to create the same Ship beans during each run. To run
the example again, first delete all rows in the SHIP and CRUISE tables.

Delete all rows in the SHIP and CRUISE tables before proceeding to the next example.

Client_76a.jsp

This example demonstrates the Cruise/Reservation relationship, including the use of set methods
to modify the reservations associated with a Cruise (see Figure 7-14).

First, the example creates two Cruise beans (Cruise A and B) and six Reservation beans. Note
that the create method for a Reservation bean requires a Cruise bean as an input parameter,
thereby providing a mechanism to link a Reservation to a Cruise from the start. The first three
Reservation beans are linked to Cruise A, the last three to Cruise B.

The next section of code demonstrates the effect of calling setReservations on a Cruise bean:

Collection a_reservations = cruiseA.getReservations();
cruiseB.setReservations(a_reservations);

Cruise A's getReservations method provides a collection of references to the reservations
associated with Cruise A. This collection is then passed to Cruise B's setReservations
method.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

128 Buy the printed version of this book at http://www.titan-books.com

The net effect, as shown in Figure 7-14 in the EJB book, is that the Reservation beans originally
linked to Cruise B are orphaned (they are no longer linked to any Cruise).

This example may be run more than once without errors, because the Cruise and Reservation
beans are assigned new unique primary keys automatically when created. To avoid confusion
when examining the tables, however, be sure the CRUISE and RESERVATION tables are empty
before proceeding to the next example.

Client_76b.jsp

This example demonstrates the Cruise/Reservation relationship, including the use of addAll to
modify the Reservations associated with a Cruise (Figure 7-15).

This example creates the same set of two Cruise and six Reservation beans, with the same
relationships between them. The next section of code demonstrates the effect of using addAll
instead of a set method:

UserTransaction tran =
(UserTransaction)jndiContext.lookup("java:comp/UserTransaction");
try {
 tran.begin();
 Collection a_reservations = cruiseA.getReservations();
 Collection b_reservations = cruiseB.getReservations();
 b_reservations.addAll(a_reservations);
 tran.commit();
}
catch (Exception e) {
 e.printStackTrace();
 tran.rollback();
}

Manipulating the contents of Collection objects representing the bean relationships must be
done in the context of a UserTransaction, either created explicitly (as we’ve done here) or within a
transaction created by the container automatically (using declarative transactions). We covered
this requirement in the previous exercise.

Within the transaction block, the three lines that actually perform the manipulation are:
 Collection a_reservations = cruiseA.getReservations();
 Collection b_reservations = cruiseB.getReservations();
 b_reservations.addAll(a_reservations);

This code obtains collections containing the Reservation beans associated with each Cruise bean.
It is important to recognize that the objects returned by relationship get methods such as
getReservations may look like simple Java Collection objects, but they are actually
container-generated objects representing the relationships. These objects implement the
Collection interface, and any manipulation of the objects using methods available in the
Collection interface causes corresponding changes to the underlying relationships and
database tables.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 129

In this example, we use the addAll method in the Collection interface to add the contents of
the a_reservations collection to the current contents of the b_reservations collection.
Because the multiplicity on the Reservation side of the relationship is “one,” there can be only one
Cruise associated with each Reservation bean. Therefore, the addAll invocation has the effect of
linking all of the Reservation beans only to Cruise B, leaving Cruise A with none (see Figure 7-15
in the EJB book).

Automatic key creation makes it possible to run this example more than once without error. The
CRUISE and RESERVATION tables, however, should be empty before proceeding to the next
example, to avoid confusion when examining the tables.

Client_77a.jsp

This example demonstrates the Customer/Reservation relationship including the use of addAll
to modify the Customers for a Reservation (Figure 7-17).

Six Customer beans and two Reservation beans are created, with each Reservation bean related to
three Customer beans. In a manner very similar to Client_76b.jsp, we manipulate the
relationship between the beans using collection (Set) objects and the addAll method:

Set customers_a = reservations[1].getCustomers();
Set customers_b = reservations[2].getCustomers();
customers_a.addAll(customers_b);

As in the previous client program, addAll adds the contents of one collection to the other,
essentially linking all six Customer beans to the first Reservation bean. The difference in this
example, however, is that both sides of the relationship have a multiplicity of “many,” so the act of
linking the Customer beans associated with the second Reservation to the first Reservation does
not affect their relationships with the second Reservation bean. They are simply linked to both
Reservation beans after this operation, as shown in Figure 7-17 in the EJB book.

Because this example creates Customer objects with specific primary keys (1-6) you may not run it
more than once unless you clear out the tables first. In addition, the CUSTOMER, RESERVATION,
and RESERVATION_CUSTOMER_LINK tables should be empty before proceeding to the next
example.

Client_77b.jsp

This example demonstrates the Customer/Reservation relationship, including the use of
setCustomers to modify the Customers for a Reservation (Figure 7-18).

Six Customer beans are again created along with four Reservation beans. The relationships
between the Customer beans and the Reservation beans is more complex in this example, with
each Reservation linked to a different set of three Customer beans:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

130 Buy the printed version of this book at http://www.titan-books.com

Figure 34: Initial relationships in Client_77b example

The next section manipulates these relationships using the setCustomers method on one of the
Reservation beans:

try {
tran.begin();
Set customers_a = reservations[1].getCustomers();
reservations[4].setCustomers(customers_a);
tran.commit();

}
catch (Exception e) {

e.printStackTrace();
tran.rollback();

}

We explained the need for a transaction in the previous examples. The important lines are inside
the transaction block:

Set customers_a = reservations[1].getCustomers();
reservations[4].setCustomers(customers_a);

A collection (Set) of Customer beans is retrieved from the first Reservation bean. This collection
will contain references to Customers 1-3 in this example. The setCustomers method is called
on the fourth Reservation bean to change its list of related Customer beans to be equal to the
passed-in collection.

Because the multiplicity on both sides of the relationship is “many,” this operation does not
remove any other links between Customers 1-3 and their related Reservation beans, but simply
changes the links associated with the fourth Reservation bean to be as they are shown in the
following figure:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 131

Figure 35: Relationships after setCustomers operation on Reservation D

Because this example creates Customer objects with specific primary keys (1-6) you may not run it
more than once unless you clear out the tables first. In addition, the CUSTOMER, RESERVATION,
and RESERVATION_CUSTOMER_LINK tables should be empty before proceeding to the next
example.

Client_77c.jsp

This example demonstrates the Cabin/Reservation relationship, including the removal of Cabins
from the Reservation using an iterator (Figure 7-20).

A set of four Reservation beans and another of six Cabin beans are created and linked to each
other as shown in Figure 36 below:

Figure 36: Initial relationships in Client_77c example

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

132 Buy the printed version of this book at http://www.titan-books.com

The application starts a transaction, acquires the collection of Cabin beans associated with the
first Reservation, and uses it to retrieve an Iterator object:

try {
 tran.begin();
 Set cabins_a = reservations[1].getCabins();
 Iterator iterator = cabins_a.iterator();
 while (iterator.hasNext()) {
 CabinLocal cc = (CabinLocal)iterator.next();
 System.out.println("...");
 out.print("...");
 iterator.remove();
 }
 tran.commit();
}
catch (Exception e) {
 e.printStackTrace();
 tran.rollback();
}

The loop iterates through the elements of the collection and removes them from it, effectively
removing these cabins from the relationship with the first Reservation bean. The Cabin beans
themselves are not removed, of course; just the links with the Reservation.

After this loop is complete, the Reservation/Cabin relationships will look like this:

Figure 37: Relationships after removing cabins from Reservation A’s collection

Because this example creates Cabin objects with specific primary keys (1-6) you may not run it
more than once unless you clear out the tables first. In addition, the CABIN, RESERVATION, and
RESERVATION_CABIN_LINK tables should be empty before proceeding to the next example.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 133

Client_77d.jsp

This example demonstrates the Cabin/Reservation relationship, including the use of setCabins
to modify the Cabins for a Reservation.

The code in the example walks step-by-step through the creation of Reservations, Cabins, and
their relationships before using the setCabins method to modify the relationship. We hope this
example will cement your understanding of relationships in CMP 2.0, and how you can create and
manipulate them using cmr fields and method calls.

First, three Cabin beans are created using primary key values 1-3:
cabins[1] = cabinhome.create(new Integer(1));
cabins[1].setShip(shipA);
cabins[1].setDeckLevel(1);
cabins[1].setName("Minnesota Suite");
cabins[1].setBedCount(2);
cabins[2] = cabinhome.create(new Integer(2));
...
cabins[3] = cabinhome.create(new Integer(3));
...

Next, two Reservation beans are created (via automatic key generation):
reservations[1] = reservationhome.create(cruiseA, null);
reservations[1].setDate(...);
reservations[1].setAmountPaid(4000.0);
date.add(Calendar.DAY_OF_MONTH, 7);

reservations[2] = reservationhome.create(cruiseA, null);
...

The following figure illustrates the status of the Reservation and Cabin beans at this point. The
beans exist but are not yet related to each other:

Figure 38: Reservation and Cabin beans after bean creation

The next section builds two simple HashSet objects containing Cabins 1 and 2, and Cabins 2 and
3, respectively:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

134 Buy the printed version of this book at http://www.titan-books.com

Set cabins1 = new HashSet(2);
cabins1.add(cabins[1]);
cabins1.add(cabins[2]);
Set cabins2 = new HashSet(2);
cabins2.add(cabins[2]);
cabins2.add(cabins[3]);

These Set objects contain references to the Cabin beans as shown below:

Figure 39: Set objects contain Cabin beans

The next two lines of code use these Set objects in calls to the Reservation beans:

reservations[1].setCabins(cabins1);
reservations[2].setCabins(cabins2);

The resulting Reservation/Cabin relationships look like this:

Figure 40: Relationships after setCabins calls on both Reservation beans

The final section of code uses the setCabins method to replace previous links between the
second Reservation bean and its Cabins with links to the specified set of Cabin beans, much as
you've seen before.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 135

try {
 tran.begin();
 Set cabins_a = reservations[1].getCabins();
 reservations[2].setCabins(cabins_a);
 tran.commit();
}
catch (Exception e) {
 e.printStackTrace();
 tran.rollback();
}

The resulting relationships look like this:

Figure 41: Relationships after modifying Reservation B’s cabins

Because this example creates Cabin objects with specific primary keys (1-3) you may not run it
more than once unless you clear out the tables first. In addition, the CABIN, RESERVATION, and
RESERVATION_CABIN_LINK tables should be empty before proceeding to the next exercise.

Optional Additional Tasks

Change the Ship and Cabin beans to use automatic sequence generation. This variation entails:

1. Making changes to the weblogic-cmp-rdbms-jar.xml file

2. Creating SHIP_SEQUENCE and CABIN_SEQUENCE tables with single rows in each

3. Modifying the create and postcreate methods in bean and local interfaces to remove the
primary key from the parameter list and method code

Test your changes by modifying one of the client JSP pages to create some beans without
specifying the primary key.

136

Exercise 7.3:
Cascade Deletes in CMP 2.0
This is a very short exercise to demonstrate the use of automatic cascade-delete handling by the
container, using the Customer bean and some related “children” beans.

Download and Build the Example Programs

Download and extract the ex07_3 directory in the familiar way.

There are no differences between this set of code and descriptors and the files in the ex07_2
example other than the additional <cascade-delete/> tags in the ejb-jar.xml file and the new
example JSP page for this exercise.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

This exercise requires no additional database objects. All tables should be empty at the start of
the exercise to avoid duplicate-key errors.

Examine the Standard EJB Descriptor File

The special <cascade-delete/> tag appears in the relationship section of the standard
descriptor file (ejb-jar.xml) within the “role” section for the bean that should be deleted when the
parent is deleted. For example, the Address bean associated with the Customer bean should be
deleted when the Customer is removed, so the pertinent section of the ejb-jar.xml file now has the
<cascade-delete/> tag:

<ejb-relation>
 <ejb-relation-name>Customer-HomeAddress</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Customer-has-a-Address
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>homeAddress</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 137

 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Address-belongs-to-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
</ejb-relation>

Note that the <cascade-delete/> tag is placed on the “dependent object” side of the
relationship, in this case on the Address EJB side of the Customer/HomeAddress relationship.

Scan through ejb-jar.xml and find the other places this tag has been added to relationships.

Examine the WebLogic-Specific Files/Components

This exercise requires no changes to the WebLogic-specific descriptor files.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the ejbbook domain.
Use the redeploy task to force a re-deployment of the entire titanapp enterprise application, or
simply reboot the server to deploy the new titanejb.jar file.

Use the console to verify that all of the example beans are properly deployed by checking for their
home interfaces in the JNDI tree.

Examine and Run the Client JSP Pages

There is a single client JSP page available in this exercise, Client_78.jsp. It demonstrates the
creation of a Customer EJB having a related CreditCard, Address, and list of Phone beans. It then
shows the container's ability to perform cascading deletions. A simple call removes the Customer,
and the container's CMP functionality automatically removes its children.

The example page is straightforward and will not be discussed in detail in this workbook.

The example should not leave any new rows in the database, but do ensure that the workbook
tables are empty before proceeding to the next exercise.

139

Exercises for Chapter 8

140

Exercise 8.1:
Simple EJB QL Statements
This exercise explores some of the basic EJB QL functionality available in CMP 2.0, including
finder methods, ejbSelect methods, and the use of the IN operation in queries. More complex
queries and operations will be examined in the next exercise.

Download and Build the Example Programs

Download and extract the ex08_1 directory as you have other example directories.

This example extends the same EJB components you worked with in the previous exercise, adding
new finder methods to home interfaces and ejbSelect methods to beans.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

This exercises requires no additional database objects. To avoid duplicate-key errors, make sure
all tables are empty at the start of the exercise.

Examine the Standard EJB Descriptor File

EJB QL is a standard mechanism for declaring the queries (both finder methods and ejbSelect
methods) available in the beans and their home interfaces. Because it is a standard mechanism,
all of the descriptor information required for these queries is normally found in the standard
ejb-jar.xml file.

The first minor change this exercise requires is a change in the <abstract-schema-name>
element for all of the entity beans. This is the name that will appear in the query definitions to
represent a given entity bean. It need not match the EJB name or the physical database table
name. For previous exercises it looked like this:

<abstract-schema-name>CustomerEJB</abstract-schema-name>

To make the query definitions look a little more like SQL, the element for each bean now looks
something like:

<abstract-schema-name>Customer</abstract-schema-name>

There are a number of new <query> sections in the ejb-jar.xml file. We will examine them in the
order in which they appear in the file.

The first set of <query> elements defines three different finder methods in the Customer home
interface for locating Customer beans by name, by credit rating, or by city:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 141

<query>
 <query-method>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName = ?1 AND c.firstName = ?2
 </ejb-ql>
</query>
<query>
 <query-method>
 <method-name>findByGoodCredit</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.hasGoodCredit = TRUE
 </ejb-ql>
</query>
<query>
 <query-method>
 <method-name>findByCity</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.homeAddress.city=?1 AND c.homeAddress.state=?2
 </ejb-ql>
</query>

Some important things to note about these finder queries:

♦ They all return zero or more Customer beans matching the criteria specified. Finder methods
must return the beans managed by that home interface. They may not return other beans or
other data types like String, Integer, etc.

♦ The findByName and findByCity methods expect parameters and use the placeholders ?1
and ?2 to refer to these parameters within the <ejb-ql> element.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

142 Buy the printed version of this book at http://www.titan-books.com

♦ The WHERE clause for the findByCity method demonstrates traversing a single-valued
relationship (i.e., “something-to-one” not “something-to-many”) to obtain an attribute value
in a related bean. The method uses the cmr field name homeAddress to traverse the
relation, not the physical database foreign key, ADDRESS_ID.

Each finder query must have a corresponding method definition in the home interface:

CustomerHomeLocal.java
public CustomerLocal findByName(String lastName, String firstName)
 throws FinderException;

public Collection findByGoodCredit()
 throws FinderException;

public Collection findByCity(String city, String state)
 throws FinderException;

Note that the method names and parameter types must exactly match the <method-name> and
<method-param> elements in the query definition, but the parameter names are unimportant.

Finders can return either a single bean reference or a Collection of bean references. If the query
returns multiple beans but the method definition in the home interface specifies a single bean as
the return type (as findByName's definition does above), only the first matching bean will be
returned.

 Warning: The specific bean returned in this case is impossible to determine with confidence.
It is likely to be either 1) the first bean encountered in the table while scanning a database
index on the specified columns, or 2) the first bean inserted in the table if no corresponding
index exists. In addition, the fact that multiple matching beans exist is unknown to the caller
because there is no exception thrown or return value present indicating this fact. Unless the
criteria are known to represent a unique bean, the use of a single bean reference as a return
type for a finder method should be avoided in favor of a collection.

The next query section in ejb-jar.xml defines some ejbSelect methods in the Address bean:
<query>
 <query-method>
 <method-name>ejbSelectZipCodes</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT a.zip FROM Address AS a
 WHERE a.state = ?1
 </ejb-ql>
</query>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 143

<query>
 <query-method>
 <method-name>ejbSelectAll</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(a) FROM Address AS a
 </ejb-ql>
</query>
<query>
 <query-method>
 <method-name>ejbSelectCustomer</method-name>
 <method-params>
 <method-param>com.titan.customer.AddressLocal
 </method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer AS c
 WHERE c.homeAddress = ?1
 </ejb-ql>
</query>

These ejbSelect queries demonstrate some additional functionality:

♦ The ejbSelectZipCodes query returns a simple String datatype rather than a bean
reference.

♦ The ejbSelectAll query returns Address beans, something we could just as easily have
accomplished with a finder method in the Address home interface.

♦ The ejbSelectCustomer query returns a Customer bean, rather than an Address bean,
something we could not do in a finder method in the Address home interface (although it
could be done in the Customer home interface).

♦ The WHERE clause in the final query also uses the relationship-traversal syntax
(“c.homeAddress”) and demonstrates checking for equality with a specific bean (the desired
Address is passed in as a query method parameter).

Each ejbSelect query must have a corresponding method in the Address bean class:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

144 Buy the printed version of this book at http://www.titan-books.com

AddressBean.java
public abstract Set ejbSelectZipCodes(String state)
 throws FinderException;

public abstract Collection ejbSelectAll()
 throws FinderException;

public abstract EntityBean ejbSelectCustomer(AddressLocal addr)
 throws FinderException;

The method names and parameter types must match the definitions in the <query> elements
perfectly, but the parameter names are not important. The choice of return type is very important
for methods which return multiple objects (bean references, Strings, etc). As the EJB book
points out, the use of Set implies duplicate values should be removed, while Collection allows
for duplicates in the returned collection.

The return type for the ejbSelectCustomer method should be CustomerLocal, but a bug in
the current version of WebLogic requires the use of javax.ejb.EntityBean as a return type to
avoid CMP compilation errors. It will still return a reference to a Customer bean, but the
returned type will be EntityBean and the caller must cast it to CustomerLocal before use.

 Note also: As this workbook went to press, a pending WebLogic bug (#CR051294) prevented
this ejbSelect method from operating properly.

A significant downside to using ejbSelect methods is their definition as private methods in the
CMP-generated bean code, making them available only within the bean class itself.

To facilitate testing the methods and building simple client example programs, the example code
uses a public Home method in the Address home interface with a corresponding public ejbHome
method in the bean which calls the desired internal ejbSelect method:

AddressHomeLocal.java
public Collection selectZipCodes(String state)
 throws FinderException;

AddressBean.java
public Collection ejbHomeSelectZipCodes(String state)
 throws FinderException {
 return this.ejbSelectZipCodes(state);
}

Home methods are described briefly in Chapter 5 of the EJB book and are covered in detail in
Chapter 11. Adding these methods makes it easy to test the private ejbSelectZipCodes
query method by invoking the public selectZipCodes method in the Address home
interface.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 145

The next query section in ejb-jar.xml defines a simple finder method of the Cruise bean:
<query>
 <query-method>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1
 </ejb-ql>
</query>

This very straightforward method accepts a String parameter and returns zero or more Cruise
beans. The method definition in the Cruise home interface is:

CruiseHomeLocal.java
public CruiseLocal findByName(String name)
 throws FinderException;

The use of CruiseLocal as the return type rather than Collection implies that there should
only be one Cruise with a given name – which may or may not be true. If more than one Cruise
has a given name, the finder method will return the first one it finds.

The final query section in ejb-jar.xml defines a finder and an ejbSelect method for the Cabin
bean:

<query>
 <query-method>
 <method-name>findAllOnDeckLevel</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Cabin as c WHERE c.deckLevel = ?1
 </ejb-ql>
</query>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

146 Buy the printed version of this book at http://www.titan-books.com

<query>
 <query-method>
 <method-name>ejbSelectAllForCustomer</method-name>
 <method-params>
 <method-param>com.titan.customer.CustomerLocal
 </method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(cab) FROM Customer AS cust,
 IN(cust.reservations) AS res,
 IN(res.cabins) AS cab
 WHERE cust = ?1
 </ejb-ql>
</query>

The finder, findAllOnDeckLevel, is very straightforward. It accepts an integer parameter and
returns zero or more Cabin beans that match the criterion. There is a corresponding method in
the Cabin home interface:

CabinHomeLocal.java
public abstract Collection findAllOnDeckLevel(Integer level)
 throws FinderException;

The second query in the Cabin bean, ejbSelectAllForCustomer, is more complex. It is
designed to return a collection of all Cabin beans related to a given Customer. Recall that the
relationships among Customer, Reservation, and Cabin are “many-sided”:

Figure 42: Many-to-many relationships in ejbSelectAllForCustomer query

The query uses the IN operation discussed in the EJB book to traverse the relationships from the
Customer bean down through the “reservations” cmr field to a list of Reservation beans, then
through the “cabins” cmr field on each Reservation bean to a list of Cabin beans:

SELECT OBJECT(cab) FROM Customer AS cust,
 IN(cust.reservations) AS res,
 IN(res.cabins) AS cab
WHERE cust = ?1

An alternate non-standard syntax available in WebLogic makes this process of traversing cmr
fields a little clearer:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 147

SELECT OBJECT(cab) FROM Customer AS cust,
 cab in cust.reservations.cabins
WHERE cust = ?1

The alternate syntax replaces the multiple IN operations with a single chain of cmr fields. This
syntax is available only in WebLogic, so don’t use it if you wish your EJB-based application to be
vendor- and platform-independent.

A public Home method called selectAllForCustomer is available in the Cabin home interface
that calls this private ejbSelectAllForCustomer select method when invoked:

CabinHomeLocal.java
public Set selectAllForCustomer(CustomerLocal cust)
 throws FinderException;

CabinBean.java
public abstract Set ejbSelectAllForCustomer(CustomerLocal cust)
 throws FinderException;

public Set ejbHomeSelectAllForCustomer(CustomerLocal cust)
 throws FinderException {
 return this.ejbSelectAllForCustomer(cust);
}

Note that we are using Set as the return type for these methods to indicate to the container that
the resulting list of Cabins should not contain duplicates.

Examine the WebLogic-Specific Files/Components

This exercise requires no changes to the WebLogic-specific descriptor files.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

Use the console to verify that all the example beans are properly deployed by checking for their
home interfaces in the JNDI tree.

Examine and Run the Client JSP Pages

This exercise includes a large number of client JSP pages that demonstrate use of the query
methods you've just seen. The ant dist task should have copied the pages to the webapp directory
in the titanapp exploded .ear file, making them available using the standard URLs; e.g.:

http://servername:7001/webapp/Client_81.jsp

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

148 Buy the printed version of this book at http://www.titan-books.com

The example JSP pages are first summarized, then described in more detail:

♦ Client_81.jsp demonstrates the findByName finder method in the Customer home interface

♦ Client_82.jsp demonstrates the findByCity finder method in the Customer home interface

♦ Client_83.jsp demonstrates the ejbSelectZipCodes select method in the Address bean

♦ Client_84a.jsp sets up the database for the subsequent examples.

♦ Client_84b.jsp demonstrates the findAllOnDeckLevel finder method in the Cabin home
interface

♦ Client_84c.jsp demonstrates the ejbSelectAllForCustomer select method in the Cabin
bean

Client_81.jsp

This example creates a small set of Customer beans and demonstrates the findByName finder
method in the Customer home interface.

The first section of code creates Customer beans with key values from 80-99 and populates them
with some appropriate attributes along with Address and Phone information.

The next section performs the call to the findByName finder method to acquire a reference to a
single Customer bean with the desired name:

CustomerLocal cust85 = customerhome.findByName("Smith85","John");

The client displays information about the retrieved Customer to verify that the finder method
properly returned a Customer having the desired name.

The Customer beans created in this exercise are used in Client_82 and Client_83.jsp, so do not
delete them unless you wish to modify Client_81 and run it again.

Client_82.jsp

This example demonstrates the findByCity finder method in the Customer home interface. The
Customer beans created in Client_81.jsp must still exist in the database, along with their Address
information.

The code first invokes the Customer's findByCity method to retrieve a collection of matching
Customer bean references:

Collection mplscusts = custhome.findByCity("Minneapolis","MN");

The client then iterates through the collection and displays information about the Customer beans
returned to let you verify that they indeed match the criteria. Note that this search is case-
sensitive, so the names must match exactly. In the next exercise (8.2) we will use the LIKE
comparison operator to perform searches with partial matches, but unfortunately EJB QL lacks
any simple way to perform case-insensitive searches.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 149

Client_83.jsp

This example demonstrates the ejbSelectZipCodes select method in the Address bean. The
Customer beans created in Client_81.jsp must still exist in the database, along with their Address
information.

Normally, ejbSelect methods defined on EJBs are not accessible to outside callers such as our
client JSP page. We created the public Home method selectZipCodes and matching
ejbHomeSelectZipCodes method on the bean for just this purpose.

The code in the client page simply calls the public selectZipCodes Home method and iterates
through the returned Collection:

Collection mnzips = addresshome.selectZipCodes("MN");
Iterator iterator = mnzips.iterator();
while (iterator.hasNext()) {
 String zip = (String)(iterator.next());
 out.print(zip+"
");
}

As an optional exercise, try modifying the ejbSelect method in the Address bean to return a
Collection instead of a Set:

AddressBean.java
public abstract Collection ejbSelectZipCodes(String state)
 throws FinderException;

This simple change will have a big impact on the code generated by the CMP process and the
resulting output of the method call. Use ant dist to rebuild the EJBs, and redeploy or reboot as
necessary to effect the change.

When you re-run this client page, instead of seeing each matching zip code only once, you should
see a longer list with the same zip codes appearing multiple times.

The next three example programs use a different set of sample data, so empty all of the workbook
tables before proceeding to Client_84a.jsp.

Client_84a.jsp

This example sets up the database for the subsequent two examples by creating a set of six
Customer beans, each with two related Reservation beans, each having two Cabins:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

150 Buy the printed version of this book at http://www.titan-books.com

Figure 43: Beans and relationships created by Client_84a.jsp

Client_84b.jsp

This example demonstrates the findAllOnDeckLevel finder method in the Cabin home
interface. It is a fairly straightforward program with a single call to the finder method to retrieve
a collection of Cabin bean references:

Collection cabins = cabinhome.findAllOnDeckLevel(new Integer(3));

Iterator iter = cabins.iterator();
while (iter.hasNext()) {
 CabinLocal cabin = (CabinLocal)(iter.next());
 out.print(cabin.getName()+ ...);
}

 You may be wondering why we did not have to enclose the iteration through this collection in
a transaction, as in the examples in Exercise 7.2. In that exercise, the Collection
references we received by calling cmr field get functions actually represented relationships
between beans, and anything we did to the collection was applied to the relationships. The
container insists that activity such as this be done in the context of a transaction. The reason
we don’t need a transaction in this case is that the collection returned by the finder method is
truly a simple Java collection of references to Cabin beans (stubs) created by the finder for our
use. It does not represent a relationship between beans as it did in the Chapter 7 exercises,
so we are free to manipulate the collection, iterate through it, remove items from it, etc. with
no possible impact on the underlying entity beans. Therefore, no transaction spanning our
activity is required.

Client_84c.jsp

This example demonstrates the ejbSelectAllForCustomer select method in the Cabin bean,
and shows the effects of the IN function in the <ejb-ql> query definition. Just as Client_83 did,
Client_84c calls a public Home method that delegates the work to the matching ejbHome method

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 151

on the bean which in turn calls the private ejbSelectAllForCustomer method to perform a
query based on the <ejb-ql> elements in the ejb-jar.xml file:

SELECT OBJECT(cab) FROM Customer AS cust,
 IN(cust.reservations) AS res,
 IN(res.cabins) AS cab
WHERE cust = ?1

The net result is a collection of Cabin bean references for all cabins that are related to the desired
Customer bean through Reservation bean relationships.

ejbSelectAllForCustomer returns a collection of Cabin beans, begging the question of why it
could not simply be a finder method in the Cabin home interface. That implementation would
eliminate the need for a Home method, would be easier to use, and would make more sense.
Unfortunately, as this workbook went to press, the current version (6.1) of WebLogic did not seem
able to create queries of this complexity as finder methods.

Make sure all workbook tables are empty before proceeding to the next exercise.

152

Exercise 8.2:
Complex EJB QL Statements
This exercise explores the more complex operations and comparison operators available in the
EJB query langage. The final example program also demonstrates use of a WebLogic-specific
extension to the EJB QL language, ORDERBY.

Download and Build the Example Programs

Download and extract the ex08_2 directory as in preceding exercises.

This example extends the same EJB components as the previous exercise, adding new finder
methods to the Customer and Ship home interfaces only.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

This exercises requires no additional database objects. To avoid duplicate-key errors, make sure
all tables are empty at the start of the exercise.

Examine the Standard EJB Descriptor File

Most of the changes to the standard EJB descriptor file are located in the CustomerEJB section of
the ejb-jar.xml file. New finder methods have been created to demonstrate more complex
operators available in EJB QL.

Start by examining the new finder methods in the ShipEJB definition:
<query>
 <query-method>
 <method-name>findByTonnage</method-name>
 <method-params>
 <method-param>java.lang.Double</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(s) FROM Ship s
 WHERE s.tonnage = ?1
 </ejb-ql>
</query>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 153

<query>
 <query-method>
 <method-name>findByTonnage</method-name>
 <method-params>
 <method-param>java.lang.Double</method-param>
 <method-param>java.lang.Double</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(s) FROM Ship s
 WHERE s.tonnage BETWEEN ?1 AND ?2
 </ejb-ql>
</query>

Items to note:

♦ The two finders have the same name but different sets of parameters. You may overload
finder methods just as you do other methods in Java. The appropriate version will be called,
depending on the parameters supplied in the method call.

♦ The two-parameter version of the method uses the BETWEEN operator in the WHERE clause to
select only those ships whose tonnage falls between the values passed .

The ShipHomeLocal interface must declare both of these finder methods:

public Collection findByTonnage(Double tonnage)
 throws javax.ejb.FinderException;

public Collection findByTonnage(Double tonnage1, Double tonnage2)
 throws javax.ejb.FinderException;

The query method to examine is a redefinition of one seen earlier. We redefined the
findByName method in the CustomerEJB to use a LIKE operator in the WHERE clause, then
renamed the old method, which used equality comparisons, to findByExactName:

<query>
 <query-method>
 <method-name>findByExactName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName = ?1 AND c.firstName = ?2
 </ejb-ql>
</query>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

154 Buy the printed version of this book at http://www.titan-books.com

<query>
 <query-method>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName LIKE ?1 AND c.firstName LIKE ?2
 </ejb-ql>
</query>

Recognize that we could not use overloading in this case because the two methods have the same
number and types of parameters.

Also note that, because the LIKE operations compare bean attribute values to parameters passed
to findByName, it will be important to include the proper wildcard characters in the parameters,
if the wildcard-matching capability of LIKE is to work as expected.

For example, these two finder calls will act exactly the same:
Collection custs1 = custhome.findByExactName(”S”,”Jo”);
Collection custs2 = custhome.findByName(”S”,”Jo”);

Because the parameters passed to findByName do not include wildcards, the LIKE operators will
in effect compare for equality. One proper way to call findByName would be:

Collection custs2 = custhome.findByName(”S%”,”Jo%”);

This call will return all Customers having first names beginning with “Jo” and last names
beginning with the letter “S”, matching people like “Joan Smith” and “Joseph Star.”

The next query section defines an additional finder that uses both name and state to demonstrate
again how the AND operator works in a WHERE clause:

<query>
 <query-method>
 <method-name>findByNameAndState</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 155

 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.lastName LIKE ?1 AND c.firstName LIKE ?2
 AND c.homeAddress.state = ?3
 </ejb-ql>
</query>

Skip two query definitions left over from the previous exercise and you will find that the next
section added for this exercise demonstrates use of the IN operator in the WHERE clause:

<query>
 <query-method>
 <method-name>findInHotStates</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.homeAddress.state IN ('FL','TX','AZ','CA')
 </ejb-ql>
</query>

This query will return only those customers having a home address in one of the specified states.

One unfortunate limitation of the IN operator is inherited from SQL itself: There is no easy way
to pass a list of values for use in the IN operator.

The next query demonstrates the use of IS EMPTY to identify beans having an “empty”
relationship:

<query>
 <query-method>
 <method-name>findWithNoReservations</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.reservations IS EMPTY
 </ejb-ql>
</query>

This query will return all Customer beans that have no related Reservation beans.

The next query demonstrates the use of MEMBER OF to identify beans that are members of a
relationship with some other bean:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

156 Buy the printed version of this book at http://www.titan-books.com

<query>
 <query-method>
 <method-name>findOnCruise</method-name>
 <method-params>
 <method-param>com.titan.cruise.CruiseLocal
 </method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(cust) FROM Customer cust, Cruise cr
 WHERE cr = ?1
 AND cust MEMBER OF cr.reservations.customers
 </ejb-ql>
</query>

This query has a single CruiseLocal parameter and uses the MEMBER OF operator to limit the
Customer beans returned to only those customers that are related to reservations for the Cruise
bean specified. This ability to traverse multiple “many” relationships and create a single set of
Customer beans is a powerful tool for creating queries, and is a much cleaner solution than the
three-way join a pure SQL query would have required.

The final new query in the descriptor file demonstrates the use of a WebLogic-specific extension
to the EJB QL language, the ORDERBY clause:

<query>
 <query-method>
 <method-name>findByState</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.homeAddress.state = ?1
 ORDERBY c.lastName,c.firstName
 </ejb-ql>
</query>

The findByState method selects a list of all Customers with a home address in the state passed
to it as a parameter. The ORDERBY clause in the query definition directs the container to return
the collection of customers sorted by last name and first name. Whether it uses an ORDER BY
clause in the actual SQL statement or simply sorts the Collection after retrieving it is up to the
CMP code-generation algorithm. WebLogic 6.1 uses an ORDER BY clause in the underlying SQL
statement.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 157

All of the Customer finder methods must be declared in the CustomerHomeLocal class:
public CustomerLocal findByExactName(String lastName,
 String firstName)
 throws FinderException;

public Collection findByName(String lastName, String firstName)
 throws FinderException;

public Collection findByNameAndState(String lastName,
 String firstName, String state)
 throws FinderException;

public Collection findByGoodCredit()
 throws FinderException;

public Collection findByCity(String city, String state)
 throws FinderException;

public Collection findInHotStates()
 throws FinderException;

public Collection findWithNoReservations()
 throws FinderException;

public Collection findOnCruise(CruiseLocal cruise)
 throws FinderException;

public Collection findByState(String state)
 throws FinderException;

Examine the WebLogic-Specific Files/Components

This exercise requires no changes to the WebLogic-specific descriptor files.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

Use the console to verify that all of the example beans are properly deployed by checking for their
home interfaces in the JNDI tree.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

158 Buy the printed version of this book at http://www.titan-books.com

Examine and Run the Client JSP Pages

This exercise includes a large number of client JSP pages that demonstrate the finder methods
added to the beans in this exercise. The ant dist task should have copied the pages to the webapp
directory in the titanapp exploded .ear file, making them available using the standard URLs:

http://servername:7001/webapp/Client_85.jsp

The following list summarizes the purpose of the example JSP pages, with more detail in the
sections following the list:

♦ Client_85.jsp demonstrates the findByTonnage methods of the Ship home interface

♦ Client_86a.jsp performs Customer setup for subsequent examples

♦ Client_86b.jsp demonstrates the two methods in the Customer home interface that find
Customers by name

♦ Client_87.jsp demonstrates the findInHotStates method of the Customer home interface

♦ Client_88.jsp demonstrates the findWithNoReservation and findOnCruise methods of
the Customer home interface

♦ Client_89.jsp demonstrates the findByState method of the Customer home interface

Client_85.jsp

This example demonstrates the findByTonnage methods of the Ship home interface.

The client first creates a variety of Ship beans with different tonnage values, then calls the one-
parameter and two-parameter versions of findByTonnage to retrieve collections of Ship beans
matching the criteria:

Collection ships100k =
shiphome.findByTonnage(new Double(100000.0));

Iterator iterator = ships100k.iterator();
while (iterator.hasNext()) {
 ShipLocal ship = (ShipLocal)(iterator.next());
 out.print("pk="+ship.getId()+ ...);
}

Collection ships50110k = shiphome.findByTonnage(
 new Double(50000.0), new Double(110000.0));

iterator = ships50110k.iterator();
while (iterator.hasNext()) {
 ShipLocal ship = (ShipLocal)(iterator.next());
 out.print("pk="+ship.getId()+ ...);
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 159

The BETWEEN operator in EJB QL is inclusive, so output for the call specifying lower and upper
limits of 50,000 and 110,000 tons should include Ship beans with exactly these displacement
values as well as values between them.

The rows created in the SHIP table by this example will be used in subsequent examples.

Client_86a.jsp

This example performs Customer setup for subsequent examples. It creates a fairly large set of
Customer beans with associated Address, Phone, Cruise, and Reservation beans sufficient for the
remaining examples in this exercise.

If you need to run this example again because of an error or because you wish to create a different
set of data for experimentation, you must first empty all workbook tables except the SHIP table to
avoid duplicate-key problems.

Client_86b.jsp

This example demonstrates the two methods in the Customer home interface that find Customers
by name.

The client uses findByExactName and findByName to produce lists of Customer beans
matching various criteria. First it calls the exact-match method, supplying a name that should
exist in the database:

CustomerLocal customer =
 customerhome.findByExactName("Star","Joe");

This will return a single Customer bean with the desired name if one exists – the first matching
bean if more than one meets the criteria.

Next, the client calls the wildcard-matching method, the one that uses a LIKE comparison
operator. We’ve purposefully neglected to include the wildcard character ('%') in the first call to
findByName to verify that it acts like the exact-match method and returns no matching
Customer beans:

Collection customers = customerhome.findByName("S","Jo");

Iterator iterator = customers.iterator();
while (iterator.hasNext()) {
 CustomerLocal customer = (CustomerLocal)(iterator.next());
 AddressLocal addr = customer.getHomeAddress();
 out.print(...);
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

160 Buy the printed version of this book at http://www.titan-books.com

The second call uses the wildcard character and should return some matching Customer beans:
customers = customerhome.findByName("S%","Jo%");

iterator = customers.iterator();
while (iterator.hasNext()) {
 CustomerLocal customer = (CustomerLocal)(iterator.next());
 AddressLocal addr = customer.getHomeAddress();
 out.print(...);
}

The final section of the code demonstrates the findByNameAndState method, passing a partial
name (including wildcards) and the desired state:

customers = customerhome.findByNameAndState("S%","Jo%","MN");

Feel free to edit this JSP page to experiment with these methods – but don’t forget to perform the
ant dist task to push any modified JSP pages to the webapp directory within the enterprise
application before trying to access them through your browser.

Client_87.jsp

This example demonstrates the findInHotStates method of the Customer home interface. It
is straightforward and will not be examined in this text.

Client_88.jsp

This example demonstrates the findWithNoReservation and findOnCruise methods of the
Customer home interface.

The first call to the findWithNoReservation method returns a list of Customer beans having
no Reservation beans in their reservations cmr field:

Collection poorcustomers = customerhome.findWithNoReservations();

Iterator iterator = poorcustomers.iterator();
while (iterator.hasNext()) {
 CustomerLocal customer = (CustomerLocal)(iterator.next());
 AddressLocal addr = customer.getHomeAddress();
 out.print(...);
}

The next section of the code demonstrates the use of the findOnCruise method. First, the
client retrieves a desired Cruise bean using its own findByName method:

CruiseLocal cruiseA = cruisehome.findByName("Alaska Cruise");

This Cruise bean is then passed to the findOnCruise method to retrieve a list of Customer
beans who have reservations on the desired cruise:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 161

Collection alaskacustomers = customerhome.findOnCruise(cruiseA);
iterator = alaskacustomers.iterator();
while (iterator.hasNext()) {
 ...
}

Recall that this finder method employed the powerful MEMBER OF operator to examine all of the
reservations for the given cruise to find the customers with reservations on that cruise:

<ejb-ql>
 SELECT OBJECT(cust) FROM Customer cust, Cruise cr
 WHERE cr = ?1 AND cust MEMBER OF cr.reservations.customers
</ejb-ql>

We supplied the “Alaska Cruise” Cruise bean, and the CMP engine performed all the necessary
database logic to build the correct list of customers.

If you want to experiment with this example page, you might try passing the other Cruise bean
(“Bohemian Cruise”), or a null value, or a new Cruise bean you create that has no reservations.

Client_89.jsp

This example demonstrates the findByState method of the Customer home interface.

The only noteworthy aspect here is the use of the WebLogic-specific ORDERBY extension to
provide the Customer beans in sorted order. Run the example and verify that the Customer beans
are sorted by last name then first name.

Feel free to play with the findByState query definition in ejb-jar.xml, changing the sort order
or removing the extension completely to see the effects. Don’t forget to perform the ant dist task
to rebuild the titanejb.jar file if you make changes to the descriptor, and to redeploy or reboot as
needed to activate the new version of the bean.

Note that it is also possible to avoid WebLogic-specific extensions in the standard ejb-jar.xml file
and still achieve the same sorting behavior. In ejb-jar.xml you can define findByState to have
the standard query without the ORDERBY clause:

<query>
 <query-method>
 <method-name>findByState</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.homeAddress.state = ?1
 </ejb-ql>
</query>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

162 Buy the printed version of this book at http://www.titan-books.com

In the weblogic-cmp-rdbms-jar.xml file you can then redefine the finder method to use the
<weblogic-query> element and the proper tags:

<weblogic-query>
 <query-method>
 <method-name>findByState</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <weblogic-ql>
 SELECT OBJECT(c) FROM Customer c
 WHERE c.homeAddress.state = ?1
 ORDERBY c.lastName
 </weblogic-ql>
</weblogic-query>

 If you want to include the WebLogic-specific extensions, the finder name and parameters must
match the version in the ejb-jar.xml file exactly. The ejb-jar.xml file will then be portable to a
different EJB container – except that it will not sort the beans as it should.

This redefinition of the finder method in the weblogic-cmp-rdbms-jar.xml file is also the location
for WebLogic-specific tuning elements such as the <include-updates> element. This element
controls whether or not bean changes occurring within the current transaction are reflected in the
result set from the query. By default, WebLogic ignores such changes , thereby improving
performance by removing the need to write all unsaved changes to the database before
performing the query. See the online documentation for more information.

Empty all of the non-sequence workbook tables before proceeding to the next exercise.

163

Exercise for Chapter 10

164

Exercise 10.1:
A BMP Entity Bean
In this exercise we will build and examine a simple EJB that uses bean-managed persistence
(BMP) to synchronize the contents of the bean with the database.

Download and Build the Example Programs

Download and extract the ex10_1 directory in the usual manner.

This example starts from scratch, retaining none of the Container-Managed Persistence (CMP)
beans built in the previous examples.

Compare the ShipBean.java files for this exercise and for Exercise 7.2 and note some differences:

♦ The BMP version is much longer (270+ lines vs. 37 lines). This difference is not surprising
because we are coding all of the persistence logic ourselves.

♦ Both versions have get and set methods for attributes, but the BMP version actually
implements these functions and uses attributes defined in the class. The CMP version simply
declares the methods abstract and leaves it to the CMP-generated subclass to implement
the methods and store the values in attributes we never see – or ever need to see.

♦ Both versions define the same standard methods (ejbLoad, ejbStore, ejbRemove,
ejbCreate, and ejbPostCreate). These functions are trivial placeholders in the CMP
version but contain a great deal of Java code in the BMP version.

♦ The BMP version also implements the get and set methods for the EntityContext, while
the CMP version simply defines empty placeholders.

♦ The BMP version must implement the two finder methods declared in the Ship home
interface (ejbFindByPrimaryKey and ejbFindByCapacity), both of which the CMP
code-generation process creates automatically in the CMP version.

Recognize that this bean is a trivial example, containing only three attributes, two finder methods,
and no relationships. It is easy to see how the sheer amount of coding required to build a BMP
entity bean drives most designers to use CMP whenever they can.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

The Ship bean in this exercise includes a new integer attribute called capacity, which was not
present in the previous exercises.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 165

If you already have a SHIP table, alter the schema to add a new column called CAPACITY with an
integer data type. If you skipped the CMP exercises and are starting with no SHIP table, create
one with the following schema:

CREATE TABLE SHIP
(
 ID INT PRIMARY KEY,
 NAME CHAR(30),
 TONNAGE DECIMAL (8,2),
 CAPACITY INT
)

To avoid duplicate-key problems, be sure the SHIP table is empty before running the example
programs.

Examine the Standard EJB Descriptor File

Many portions of the standard descriptor file ejb-jar.xml are the same as in the version used in
the CMP exercises. The first section defines the Ship bean:

<enterprise-beans>
 <entity>
 <description>This bean represents a cruise ship.
 </description>
 <ejb-name>ShipEJB</ejb-name>
 <home>com.titan.ship.ShipHomeRemote</home>
 <remote>com.titan.ship.ShipRemote</remote>
 <ejb-class>com.titan.ship.ShipBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <security-identity><use-caller-identity/>
 </security-identity>
 <resource-ref>
 <description>DataSource for the Titan database
 </description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </entity>
</enterprise-beans>

Some features to note:

♦ Setting the <persistence-type> element to Bean informs the ejbc process that we will be
using bean-managed persistence.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

166 Buy the printed version of this book at http://www.titan-books.com

♦ There is no <abstract-schema-name> element.

♦ There are no <cmp-field> elements to define the attributes of the bean.

♦ The <resource-ref> section defines the information necessary for the bean to obtain a
reference to a JDBC data source to perform SQL operations.

Note that we could eliminate the <resource-ref> section and have the bean code obtain a
JDBC connection directly from the WebLogic JDBC pool, but doing so would have two very bad
side effects:

♦ The bean code would not be portable.

♦ The container would not be aware of requests for a JDBC connection within the transaction,
so the container would not coordinate the work properly and would not ensure that all SQL
operations in the transaction are performed with a single JDBC connection.

The final section of ejb-jar.xml contains the standard elements defining transactional behavior
and security parameters:

<assembly-descriptor>
 <security-role>
 <description>
 This role represents ...
 </description>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>ShipEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Some points to note:

♦ We are back to using everyone as the role name rather than Employees.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 167

♦ All methods on the Ship bean require a transaction, so unless one is already active the
container will start one whenever a bean method is called.

♦ All database work done through the JDBC connection obtained using the jdbc/titanDB
resource will be part of this container-created transaction, so the bean code need not include
explicit begin, commit, or rollback logic.

Examine the WebLogic-Specific Files/Components

The only WebLogic-specific file in this exercise is the weblogic-ejb-jar.xml file. There is no CMP-
related descriptor file in this exercise because we are using bean-managed persistence.

We need one new section in weblogic-ejb-jar.xml, to map the jdbc/titanDB resource defined
ejb-jar.xml to the actual JDBC data source available in the container. The code in the ShipBean
class that obtains a JDBC connection looks like this:

private Connection getConnection() throws SQLException {
 try {
 Context jndiCntx = new InitialContext();
 DataSource ds =
 (DataSource)jndiCntx.lookup("java:comp/env/jdbc/titanDB");
 return ds.getConnection();
 }
...

To map this connection to the titan-dataSource JDBC data source we created before we started
working on the exercises, the <weblogic-enterprise-bean> section for the Ship bean must
include the following:

<reference-descriptor>
 <resource-description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <jndi-name>titan-dataSource</jndi-name>
 </resource-description>
</reference-descriptor>

The rest of the weblogic-ejb-jar.xml file is straightforward and has been discussed in previous
exercises. Exercise 4.1 includes a complete walkthrough of this file in case you are starting with
this exercise or need a review. Recognize that weblogic-ejb-jar.xml in the current exercise does
not include the <persistence> elements required to configure container-managed persistence
in Exercise 4.1 because we are using bean-managed persistence.

Deploy the EJB Components to WebLogic

Use the ant dist task to copy the titanejb.jar file to the proper location in the ejbbook domain.
Use the redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

168 Buy the printed version of this book at http://www.titan-books.com

Use the console to verify that the Ship bean is properly deployed by checking for the
ShipHomeRemote home interface in the JNDI tree.

Examine and Run the Client Applications

The single client example program in this exercise, Client_101.java, is patterned after the first
CMP example, Client_41.java. We will examine the program in detail in case you are starting
with this exercise.

The first section in Client_101.java creates a Ship bean by acquiring a reference to the home
interface and invoking the two-parameter version of its create method:

Context jndiContext = getInitialContext();
Object ref = jndiContext.lookup("ShipHomeRemote");
ShipHomeRemote home = (ShipHomeRemote)
 PortableRemoteObject.narrow(ref,ShipHomeRemote.class);

System.out.println("Creating Ship 101..");
ShipRemote ship1 =
 home.create(new Integer(101),"Edmund Fitzgerald");

Calling the create method of the home interface causes the container to invoke the four-
parameter version of the ejbCreate method in the ShipBean class, which will write a row to
the SHIP table in the database.

The next two lines call methods to set the bean's capacity and tonnage attributes to reasonable
values:

ship1.setTonnage(50000.0);
ship1.setCapacity(300);

Recognize that because this code is not operating within an explicit transaction, each of these calls
will cause an entire life cycle of the bean to occur in the container, including the following
callbacks to our ShipBean.java code:

♦ ejbLoad to load Ship attributes from the database

♦ setCapacity or setTonnage method to modify the attribute

♦ ejbStore to store the Ship attributes in the database

When you run the client application, each method in ShipBean.java will write a message to the
WebLogic server log, to let you see these callback methods being invoked by the container.

The next section uses the home interface's findByPrimaryKey method to acquire a reference to
the Ship bean, which the container forwards to the ejbFindByPrimaryKey method in our
ShipBean.java code:

Integer pk = new Integer(101);
ShipRemote ship2 = home.findByPrimaryKey(pk);

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 169

This new Ship reference is used to get the values of the bean attributes:
System.out.println(ship2.getName());
System.out.println(ship2.getTonnage());
System.out.println(ship2.getCapacity());

Again, we are not in a transaction, so each get method will cause a full life cycle of load and store
callbacks. Examine the WebLogic server log after a run to confirm this behavior is actually
occurring.

You might be surprised to see ejbStore calls after the “get” method calls in the log. Why does
the container bother to call ejbStore when all we did was return the value of one bean attribute?
It must do so because the container cannot see the attributes of the bean, it cannot tell if anything
is different, and it is unwilling to trust that a method that starts with the word “get” has no side
effects. When beans manage their own persistence, the container will call ejbStore at the end
of every transaction.

We could improve the bean's performance in at least three ways:

♦ Create a method on the bean that returns multiple attributes, similar to the Name dependent-
value class in Exercise 6-2. The container will still invoke ejbStore after each call to the get
method, but at least returning multiple fields in a value object would reduce the number of
calls.

♦ Add a Boolean “dirty” flag to the bean, have set methods set it to true, and have ejbStore
check it to see whether a database operation is actually required. The container will still call
ejbStore each time get is invoked, but we will avoid an expensive database hit until a set
method is called. (Container-managed persistence uses essentially the same approach to
solve the “unnecessary ejbStore problem” for us. CMP controls access to the bean's attributes
through its get and set methods and keeps track of which set methods were called.)

♦ Place operations that work with the entity bean in a session bean that starts a transaction
(either explicit or declarative) around all the get and set operations performed on the entity
bean. The container will invoke the ejbStore method only at the end of the transaction,
saving many database hits. Note that this tactic also reduces the number of ejbLoad calls.

Finally, we delete the bean using the remove method of the reference, which the container
forwards to our ejbRemove method in the ShipBean class:

ship2.remove();

Run the client in the normal manner – first remembering to execute the setEnv command or shell
script to set environment variables properly.

The client should output text similar to this:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

170 Buy the printed version of this book at http://www.titan-books.com

C:\work\ejbbook\ex10_1>java com.titan.clients.Client_101
Creating Ship 101..
Finding Ship 101 again..
Edmund Fitzgerald
50000.0
300
Removing Ship 101..

The database will be empty after the client program is finished because the last step in the
program removes the only bean.

Examine and Run the Client JSP Pages

The ant dist task should have copied the example JSP page to the webapp directory in the
titanapp exploded .ear file, making it available at the standard URL:

http://servername:7001/webapp/Client_101.jsp

The Client_101.jsp page is identical to the Client_101.java program in operation, but dumps the
database contents between steps so you can track their impact.

Make sure the SHIP table is empty before proceeding to the next exercise.

As an optional task in this exercise, implement the “dirty” flag solution from the list in the
preceding section to reduce database hits. You will need to:

♦ Add a private Boolean attribute named dirty to the ShipBean class

♦ Modify all of the set methods to set dirty to true (only if old and new values are different,
perhaps)

Modify ejbStore to save the bean attributes to the database only if dirty is true, and to reset the
flag to false after updating the data.

171

Exercises for Chapter 12

172

Exercise 12.1:
A Stateless Session Bean
In this exercise we will build and test a new stateless session EJB that writes payment information
to the database during the booking process.

Download and Build the Example Programs

Download and extract the ex12_1 directory in the normal manner.

This exercise reuses the CustomerEJB component from Exercise 6.3, along with the Name object,
AddressEJB component, HomeAddress relationship, and AddressDO object from that exercise.

The new stateless session bean ProcessPaymentEJB has a public interface with three payment
methods:

ProcessPaymentRemote.java
public interface ProcessPaymentRemote extends javax.ejb.EJBObject {

 public boolean byCheck(CustomerRemote customer,
 CheckDO check, double amount)
 throws RemoteException, PaymentException;

 public boolean byCash(CustomerRemote customer, double amount)
 throws RemoteException, PaymentException;

 public boolean byCredit(CustomerRemote customer,
 CreditCardDO card, double amount)
 throws RemoteException, PaymentException;
}

All three of these public methods eventually delegate the request to a single private method
process, which performs the database operation. Because there is no Payment EJB with CMP-
generated persistence logic, our process method must construct SQL statements and use JDBC
calls to perform the database insert:

...
con = getConnection();
ps = con.prepareStatement
 ("INSERT INTO payment (customer_id, amount, type, check_bar_code,
check_number, credit_number, credit_exp_date)"+

 " VALUES (?,?,?,?,?,?,?)");

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 173

ps.setInt(1,customerID.intValue());
ps.setDouble(2,amount);
ps.setString(3,type);
ps.setString(4,checkBarCode);
ps.setInt(5,checkNumber);
ps.setLong(6,creditNumber);
ps.setDate(7,creditExpDate);
int retVal = ps.executeUpdate();
...

The use of stateless session beans to encapsulate and perform simple JDBC operations directly,
without employing entity beans, is a very common practice in high-volume applications.

This example illustrates one other aspect of EJB communication: The public methods byCheck,
byCash, and byCredit accept a CustomerRemote interface as an input parameter. Before
calling any of them, the client must first acquire such a reference (using the
CustomerHomeRemote interface and the appropriate “find” method). A remote client can pass a
remote Customer reference to a method such as byCheck because the CustomerRemote object is
a Serializable object that the underlying RMI communication process can pass by value.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

The ProcessPaymentEJB inserts new records in the PAYMENT table. Create this table in your
database:

CREATE TABLE PAYMENT
(
 CUSTOMER_ID INT,
 AMOUNT DECIMAL(8,2),
 TYPE CHAR(10),
 CHECK_BAR_CODE CHAR(50),
 CHECK_NUMBER INTEGER,
 CREDIT_NUMBER CHAR(20),
 CREDIT_EXP_DATE DATE
)

Make sure the last four columns allow nulls, because the table will include rows for some
payments in which these columns do not make sense; e.g., a payment by check has no
CREDIT_NUMBER.

Note that there is no primary key in this table, nor will we be building an entity EJB to represent a
Payment object.

Ensure that all non-sequence workbook tables are empty before running the example programs.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

174 Buy the printed version of this book at http://www.titan-books.com

Examine the Standard EJB Descriptor File

You are probably becoming very familiar with the general structure and contents of the standard
ejb-jar.xml descriptor file. The version in this exercise combines elements describing the
ProcessPaymentEJB stateless session bean and the Customer EJB and related beans.

The first section contains elements describing the ProcessPayment EJB:
<session>
 <description>
 A service that handles monetary payments.
 </description>
 <ejb-name>ProcessPaymentEJB</ejb-name>
 <home>com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>com.titan.processpayment.ProcessPaymentRemote
 </remote>
 <ejb-class>com.titan.processpayment.ProcessPaymentBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>minCheckNumber</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>2000</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>DataSource for the Titan database
 </description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</session>

The <session-type> element declares the bean to be Stateless. The <env-entry> element
defines the variable minCheckNumber and gives it the integer value “2000.” The
ProcessPayment EJB can now obtain this threshold value using code like this:

private int getMinCheckNumber() {
 try {
 InitialContext jndiCntx = new InitialContext();
 Integer value = (Integer)
 jndiCntx.lookup("java:comp/env/minCheckNumber");
 return value.intValue();
 } catch(NamingException ne){throw new EJBException(ne);}
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 175

The <resource-ref> element in this section makes the titanDB data source available to the
ProcessPayment EJB. As you saw in Exercise 10.1, the bean gains access to the data source with
syntax such as:

private Connection getConnection() throws SQLException {
 try {
 InitialContext jndiCntx = new InitialContext();
 DataSource ds = (DataSource)
 jndiCntx.lookup("java:comp/env/jdbc/titanDB");
 return ds.getConnection();
 } catch(NamingException ne){throw new EJBException(ne);}
}

The next few sections of the ejb-jar.xml descriptor file define the Customer and Address EJBs,
their individual cmp fields, and the Customer-HomeAddress relationship. These sections are
identical to their counterparts in Exercise 6.3.

Finally, the <assembly-descriptor> section defines the access rights and transactional
properties of all methods of all beans. The role everyone may access all methods, and a
transaction is required for all methods.

Examine the WebLogic-Specific Files/Components

The two WebLogic-specific descriptor files contain the normal entries for defining pool/cache
parameters, security mapping, and the CMP-specific descriptor location. In addition, the
<reference-descriptor> section for the bean in weblogic-ejb-jar.xml must include a
<resource-description> element that matches the <resource-ref> element in ejb-
jar.xml:

ejb-jar.xml
<resource-ref>
 <description>DataSource for the Titan database</description>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

weblogic-ejb-jar.xml
<reference-descriptor>
 <resource-description>

<res-ref-name>jdbc/titanDB</res-ref-name>
<jndi-name>titan-dataSource</jndi-name>

 </resource-description>
</reference-descriptor>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

176 Buy the printed version of this book at http://www.titan-books.com

This mapping allows the code in the bean to use the “java:comp/env/jdbc/titanDB” syntax to
refer to the data source we’ve registered as titan-dataSource in our WebLogic JNDI tree.

The weblogic-cmp-rdbms-jar.xml descriptor file contains the customary entries for field and
relationship mapping for the Customer and Address EJB. This file is basically unchanged from
Exercise 6.3.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

Use the console to verify that all the example beans are properly deployed by checking for their
home interfaces in the JNDI tree.

Examine and Run the Client Applications

The download provides two simple example programs, Client_121.java and Client_122.java.

Client_121.java

This program creates a single Customer bean for use in the next program. It is very similar to the
the Client_63.jsp example page from Exercise 6.3. Run it from the command line after setting
environment variables properly with setEnv.cmd or setEnv.sh as appropriate:

C:\work\ejbbook\ex12_1>setEnv
...
C:\work\ejbbook\ex12_1>java com.titan.clients.Client_121
Creating Customer 1..
Creating AddressDO data object..
Setting Address in Customer 1...
Acquiring Address data object from Customer 1...
Customer 1 Address data:
1010 Colorado
Austin,TX 78701

C:\work\ejbbook\ex12_1>

Client_122.java

Client_122 uses the new ProcessPayment EJB to insert rows in the PAYMENT table. We’ll walk
through this code in some detail to reinforce your understanding of the proper use of a stateless
session bean.

First we obtain a reference to the JNDI context and look up the ProcessPayment and Customer
home interfaces:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 177

Context jndiContext = getInitialContext();

Object ref = jndiContext.lookup("ProcessPaymentHome");
ProcessPaymentHomeRemote procpayhome = (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow(ref,ProcessPaymentHomeRemote.class);

ref = jndiContext.lookup("CustomerHome");
CustomerHomeRemote custhome = (CustomerHomeRemote)
 PortableRemoteObject.narrow(ref,CustomerHomeRemote.class);

Next we create a stateless session bean for our use and obtain a remote reference:
ProcessPaymentRemote procpay = procpayhome.create();

Because the public methods of the session bean require the Customer to be passed in the form of
a CustomerRemote reference, we obtain a reference of that type from a finder method of
CustomerHomeRemote – in this case, a reference to the Customer (ID=1) created by the previous
example program:

CustomerRemote cust = custhome.findByPrimaryKey(new Integer(1));

Now we are ready to begin making calls to the ProcessPayment session bean. The first call will be
to the byCash method which requires no additional information apart from the Customer
reference and the amount of the payment:

procpay.byCash(cust,1000.0);

This call will insert a row in the PAYMENT table that has the proper values for a cash transaction.

The next call, to the byCheck method, requires a CheckDO parameter. We create a CheckDO
object and pass it to the method:

CheckDO check = new CheckDO("010010101101010100011", 3001);
procpay.byCheck(cust,check,2000.0);

Note that the check number (3001) easily exceeds the minimum check number (2000) imposed in
the byCheck method via the minCheckNumber entry in the descriptor file.

The next call, to the byCredit method, requires a CreditCardDO parameter. We create a
dummy CreditCardDO object and pass it:

Calendar expdate = Calendar.getInstance();
expdate.set(2003,1,28); // month=1 is February
CreditCardDO credit = new CreditCardDO(
 "370000000000002",expdate.getTime(),"AMERICAN_EXPRESS");
procpay.byCredit(cust,credit,3000.0);

Like the other calls, this one inserts the appropriate row in the PAYMENT table and commits
before returning to the client program.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

178 Buy the printed version of this book at http://www.titan-books.com

Finally, we invoke byCheck again, this time using a check number that will not pass the method's
minimum-value test:

CheckDO check2 = new CheckDO("111000100111010110101", 1001);
try {
 procpay.byCheck(cust,check2,9000.0);
}
catch (PaymentException pe) {
 System.out.println(
 "Caught PaymentException: "+pe.getMessage());
}

The byCheck method should raise the PaymentException, and the catch block here should
catch and report it.

Note that each call to a method of the session bean creates and commits a separate container-
managed transaction because we are using declarative transactions defined in the ejb-jar.xml file
rather than creating a long-running explicit transaction spanning multiple calls. Therefore,
database changes produced by completed calls will commit, regardless of errors in subsequent
calls to the session bean.

The final step is to call the remove method to invalidate the reference and return the session bean
to the “does not exist” state. This has very little effect in the case of a stateless session bean, but is
a good practice nevertheless:

procpay.remove();

Examine the database after running Client_122.java. You should see three new rows in the
PAYMENT table representing the successful payments made by this client program.

Examine and Run the Client JSP Pages

Two client JSP pages, Client_121.jsp and Client_122.jsp, duplicate the functions of the Java client
applications described above.

The ant dist task should have copied the example JSP pages to the webapp directory in the
titanapp exploded .ear file, making them available using the standard URLs:

http://servername:7001/webapp/Client_121.jsp

Make sure the CUSTOMER and ADDRESS tables are empty before proceeding to the next exercise.

179

Exercise 12.2:
A Stateful Session Bean
If there is a “mother of all exercises” in this workbook, this is it. We’ll be combining most of the
EJB components created in preceding exercises into a single application that takes advantage of a
new stateful session EJB, the TravelAgent bean.

 Note well: The code in this workbook will not match the examples in the EJB book as exactly
as in all other exercises. We’re going to take advantage of the EJB 2.0 capabilities of
WebLogic and retain all of the relationships and beans created in Chapters 6 and 7 rather than
simplifying some of the beans as shown in the EJB book.

Download and Build the Example Programs

Download and extract the ex12_2 directory in the normal manner.

This exercise contains all of the EJB components from Exercise 7.3 with the following additions
and changes:

♦ Augments the Customer EJB's local interfaces with remote home and bean interfaces.

♦ Has Customer use an AddressDO object to expose the Address EJB relationship in the
remote interface.

♦ Includes the ProcessPayment stateless session EJB from Exercise 12.1.

♦ Adds a new TravelAgent stateful session EJB and a TicketDO value object.

♦ Adds to the Reservation EJB a new create method that takes multiple parameters.

Before we examine the descriptor files, let’s walk through some important methods in the new
TravelAgent EJB to point out items of interest.

As described in the EJB book, the TravelAgent EJB is a stateful session bean; i.e., one that
maintains values of bean attributes between one method invocation and the next. Client
applications call methods of the bean to set the desired Customer, Cruise, and Cabin values before
invoking the bookPassage method to perform all of the activities related to booking.

The typical calling pattern for the TravelAgent EJB is therefore:

1. The caller creates a TravelAgent EJB using the create method that includes a
CustomerRemote reference; the bean saves this reference in its customer attribute.

2. The caller invokes setCruiseID to attach a particular Cruise to this booking; the bean looks
up the local reference to this Cruise EJB and saves the reference in the cruise attribute.

3. The caller invokes setCabinID to attach a particular Cabin to this booking; the bean looks
up the local reference to this Cabin EJB and saves the reference in the cabin attribute.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

180 Buy the printed version of this book at http://www.titan-books.com

4. The caller invokes the bookPassage method to perform the booking and return ticket
information.

Examining the setCruiseID method will help you understand the process better:
public void setCruiseID(Integer cruiseID)

throws javax.ejb.FinderException {

try {
CruiseHomeLocal home = (CruiseHomeLocal)
jndiContext.lookup("java:comp/env/ejb/CruiseHome");
cruise = home.findByPrimaryKey(cruiseID);

} catch (NamingException ne) {
throw new EJBException(ne);

}
}

The method uses the Integer parameter cruiseID and the local home interface's
findByPrimaryKey method to acquire a local reference to the proper Cruise bean.

Note that the method performs the JNDI lookup using the “java:comp/env/ejb/CruiseHome”
syntax rather than simply specifying a JNDI name. This approach works only if ejb-jar.xml and
weblogic-ejb-jar.xml include entries that make this resource available to the bean, and map it to
the proper name in the JNDI tree.

Our bookPassage method is identical to the version in the EJB book:

public TicketDO bookPassage(CreditCardDO card,

 double price)
 throws IncompleteConversationalState, RemoteException {

 if (customer == null || cruise == null || cabin == null)
 {
 throw new IncompleteConversationalState();
 }
 try {
 ReservationHomeLocal reshome = (ReservationHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

 ReservationLocal reservation = reshome.create(
 customer, cruise, cabin, price, new Date());
 Object ref = jndiContext.lookup(
 "java:comp/env/ejb/ProcessPaymentHome");

 ProcessPaymentHomeRemote ppHome =
 (ProcessPaymentHomeRemote)
 PortableRemoteObject.narrow(

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 181

 ref, ProcessPaymentHomeRemote.class);

 ProcessPaymentRemote process = ppHome.create();
 process.byCredit(customer, card, price);
 process.remove();

 TicketDO ticket =
 new TicketDO(customer,cruise,cabin,price);
 return ticket;
 } catch (Exception e) {
 throw new EJBException(e);
}

We create a Reservation bean using the current values of the customer, cruise, and cabin
references, which must be non-null if we are to avoid an IncompleteConversationalState
exception.

Creating a Reservation EJB inserts rows in the RESERVATION, RESERVATION_CUSTOMER_LINK,
and RESERVATION_CABIN_LINK tables as needed to make the Reservation bean attributes and
relationships persistent. These rows will not be committed to the database until the containing
transaction commits.

Next, the bookPassage code invokes the byCredit method of the ProcessPayment stateless
session bean to write the appropriate row to the PAYMENT table. Finally, bookPassage
constructs a TicketDO value object containing textual information confirming the reservation
and returns it to the caller.

Note that only after all steps in the booking process are complete and the method is ready to
return to the caller does the Container commit the transaction it created automatically when
bookPassage was invoked. All changes to the database are made permanent simultaneously.

The next method in the TravelAgent bean is listAvailableCabins, a public method clients
call to obtain a list of the cabins available for a specific cruise.

In the workbook example programs, the database schema for the Reservation and Cabin EJBs
includes a many-to-many link table RESERVATION_CABIN_LINK. Because a link table is used,
the query in TravelAgent's listAvailableCabins method requires a slightly more complex
WHERE clause than the one in the EJB book:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

182 Buy the printed version of this book at http://www.titan-books.com

try {
 Integer cruiseID = (Integer)cruise.getPrimaryKey();
 Integer shipID = (Integer)cruise.getShip().getPrimaryKey();

 con = getConnection();
 ps = con.prepareStatement(
 "select ID, NAME, DECK_LEVEL from CABIN "+
 "where SHIP_ID = ? and BED_COUNT = ? and ID NOT IN "+
 "(SELECT RCL.CABIN_ID FROM RESERVATION_CABIN_LINK AS RCL,
 RESERVATION AS R "+
 " WHERE RCL.RESERVATION_ID = R.ID AND R.CRUISE_ID = ?)");
 ps.setInt(1,shipID.intValue());
 ps.setInt(2,bedCount);
 ps.setInt(3,cruiseID.intValue());
 result = ps.executeQuery();
 ...

The goal remains the same: Select only those Cabins which do not already have a related
Reservation for the specified Cruise. Our SQL statement must join the RESERVATION and
RESERVATION_CABIN_LINK tables to perform this test.

It would be instructive to build this same query as a “finder” or “ejbSelect” query in the Cabin
EJB, using EJB QL. It is likely that the MEMBER OF operation would make traversing the
relationships from Cruise to Reservation to Cabin a fairly simple operation. We leave this to the
industrious reader as an optional exercise.

The final public method in TravelAgentBean.java is a utility method called buildSampleData.
This method allows a remote client to build a set of Customer, Cabin, Cruise, and Ship objects for
use in this exercise. It builds a set of interrelated beans using create and set methods as
appropriate, and returns a collection of strings verifying the activity to the caller.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Create the Required Database Objects

This exercises requires no additional database tables.

The tables should not be modified as shown in the EJB Book for use by EJB 1.1-compliant
containers because we’ve already created and tested in previous exercises all of the entity beans
and relationships we need for this exercise.

As a reference, here are the correct schemas for all of the database tables, including the sequence
tables we’re using for primary-key generation, expressed as Cloudscape DDL commands:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 183

CREATE TABLE ADDRESS (
ID int NOT NULL PRIMARY KEY,
STREET varchar (40) NULL ,
CITY varchar (20) NULL ,
STATE varchar (2) NULL ,
ZIP varchar (10) NULL

);

CREATE TABLE ADDRESS_SEQUENCE (
SEQUENCE int NOT NULL

);

CREATE TABLE CABIN (
ID int NOT NULL PRIMARY KEY,
SHIP_ID int NULL ,
BED_COUNT int NULL ,
NAME varchar (30) NULL ,
DECK_LEVEL int NULL

);

CREATE TABLE CREDIT_CARD (
ID int NOT NULL PRIMARY KEY,
EXP_DATE date NULL ,
NUMBER varchar (20) NULL ,
NAME varchar (40) NULL ,
ORGANIZATION varchar (20) NULL ,
CUSTOMER_ID int NULL

);

CREATE TABLE CREDIT_CARD_SEQUENCE (
SEQUENCE int NOT NULL

);

CREATE TABLE CRUISE (
ID int NOT NULL PRIMARY KEY,
NAME varchar (30) NULL ,
SHIP_ID int NULL

);

CREATE TABLE CRUISE_SEQUENCE (
SEQUENCE int NULL

);

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

184 Buy the printed version of this book at http://www.titan-books.com

CREATE TABLE CUSTOMER (
ID int NOT NULL PRIMARY KEY,
LAST_NAME varchar (20) NULL ,
FIRST_NAME varchar (20) NULL ,
ADDRESS_ID int NULL ,
HAS_GOOD_CREDIT boolean NULL

);

CREATE TABLE PAYMENT (
customer_id int NOT NULL ,
amount decimal(8, 2) NOT NULL ,
type char (10) NOT NULL ,
check_bar_code char (50) NULL ,
check_number int NULL ,
credit_number char (20) NULL ,
credit_exp_date date NULL

);

CREATE TABLE PHONE (
ID int NOT NULL PRIMARY KEY,
NUMBER varchar (20) NULL ,
TYPE int NULL ,
CUSTOMER_ID int NULL

);

CREATE TABLE PHONE_SEQUENCE (
SEQUENCE int NOT NULL

);

CREATE TABLE RESERVATION (
ID int NOT NULL PRIMARY KEY,
CRUISE_ID int NULL ,
AMOUNT_PAID float NULL ,
DATE_RESERVED date NULL

);

CREATE TABLE RESERVATION_CABIN_LINK (
RESERVATION_ID int NOT NULL ,
CABIN_ID int NOT NULL

);

CREATE TABLE RESERVATION_CUSTOMER_LINK (
RESERVATION_ID int NOT NULL ,
CUSTOMER_ID int NOT NULL

);

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 185

CREATE TABLE RESERVATION_SEQUENCE (
SEQUENCE int NULL

);

CREATE TABLE SHIP (
ID int NOT NULL PRIMARY KEY,
NAME varchar (30) NULL ,
TONNAGE float NULL ,
CAPACITY int NULL

);

The following tables should have the ID column set as a unique primary key:
ADDRESS
CABIN
CREDIT_CARD
CRUISE
CUSTOMER
PHONE
RESERVATION
SHIP

The SQL scripts in the root ejbbook working directory contain statements that create these tables
and primary-key constraints.

Ensure that all of the non-sequence workbook tables are empty before running the first example
program.

Examine the Standard EJB Descriptor File

The standard descriptor file, ejb-jar.xml, has gotten very long in this exercise (550+ lines). Not
surprising, considering our application has grown to include ten beans and eight relationships.
We now need to include a number of <ejb-ref> sections to provide portable access to our beans
from other beans.

The ProcessPaymentEJB section is the same as it was in Exercise 12.1, and all entity-bean sections
of the ejb-jar.xml file are essentially unchanged from the version of the file used in Exercise 7.3.
The few differences will be highlighted as we walk through the file.

The new TravelAgent stateful session bean is represented in a <session> section:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

186 Buy the printed version of this book at http://www.titan-books.com

<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 ... many ejb-ref and ejb-local-ref elements ...

 <resource-ref>
 <res-ref-name>jdbc/titanDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>

 </resource-ref>
</session>

The elements shown above should be familiar by now. The <session-type> element declares
this bean to be a Stateful session bean, and the <resource-ref> element makes the
jdbc/titanDB data source available to it.

The sections left out of the listing above are a series of <ejb-ref> and <ejb-local-ref>
elements that allow the TravelAgent EJB to look up the following home interfaces, using the
ejb/SomethingHome syntax:

♦ ProcessPaymentEJB (remote home interface)

♦ CustomerEJB (remote)

♦ CabinEJB (local)

♦ ShipEJB (local)

♦ CruiseEJB (local)

♦ ReservationEJB (local)

The next section of the ejb-jar.xml file defines the CustomerEJB:
<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <home>com.titan.customer.CustomerHomeRemote</home>
 <remote>com.titan.customer.CustomerRemote</remote>
 <local-home>com.titan.customer.CustomerHomeLocal</local-home>
 <local>com.titan.customer.CustomerLocal</local>
 <ejb-class>com.titan.customer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 187

 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Customer</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>hasGoodCredit</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 <security-identity><use-caller-identity/></security-identity>
</entity>

Did you catch the difference we’ve just introduced? In previous exercises the Customer EJB had
either a remote or a local interface, but here we’ve provided both interfaces for the same bean
class.

The two home-interface definitions are identical except for the basic differences in return types,
exceptions, etc. we'd expect to see between a home local and a home remote interface:

CustomerHomeLocal.java
package com.titan.customer;

import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CustomerHomeLocal extends javax.ejb.EJBLocalHome {
 public CustomerLocal create(Integer id)
 throws CreateException;

 public CustomerLocal findByPrimaryKey(Integer id)
 throws FinderException;
}

CustomerHomeRemote.java
package com.titan.customer;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CustomerHomeRemote extends javax.ejb.EJBHome
{
 public CustomerRemote create(Integer id)
 throws CreateException, RemoteException;

 public CustomerRemote findByPrimaryKey(Integer id)
 throws FinderException, RemoteException;
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

188 Buy the printed version of this book at http://www.titan-books.com

Now compare the bean's local and remote interfaces. Are they identical like the home-interface
definitions? Not by a long shot. Remember that it is illegal to expose a relationship or attribute
based on a local interface in the remote interface for a bean. Therefore, Customer remote
interface methods must:

1. Use value objects such as Name and AddressDO, or

2. Be helper methods like addPhoneNumber, or

3. Be get or set methods for primitive attributes of the Customer bean itself; e.g.,
hasGoodCredit.

CustomerRemote.java
package com.titan.customer;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.naming.NamingException;
import java.util.Vector;

public interface CustomerRemote extends javax.ejb.EJBObject {

 public void setAddress(String street, String city,
 String state, String zip)
 throws RemoteException, CreateException, NamingException;
 public void setAddress(AddressDO address)
 throws RemoteException, CreateException, NamingException;

 public AddressDO getAddress() throws RemoteException;
 public Name getName() throws RemoteException;
 public void setName(Name name) throws RemoteException;
 public void addPhoneNumber(String number, byte type)
 throws NamingException, CreateException, RemoteException;
 public void removePhoneNumber(byte typeToRemove)
 throws RemoteException;
 public void updatePhoneNumber(String number,
 byte typeToUpdate)
 throws RemoteException;
 public Vector getPhoneList() throws RemoteException;
 public boolean getHasGoodCredit() throws RemoteException;
 public void setHasGoodCredit(boolean flag)
 throws RemoteException;
}

The Customer local interface, on the other hand, can expose everything as a public method,
including cmr relationships such as reservations and phoneNumbers:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 189

CustomerLocal.java
package com.titan.customer;

import javax.ejb.CreateException;
import javax.naming.NamingException;
import java.util.Date;
import java.util.Vector;
import java.util.Collection;

public interface CustomerLocal extends javax.ejb.EJBLocalObject {

 public Name getName();
 public void setName(Name name);

 public boolean getHasGoodCredit();
 public void setHasGoodCredit(boolean flag);

 public void addPhoneNumber(String number, byte type)
 throws NamingException, CreateException;
 public void removePhoneNumber(byte typeToRemove);
 public void updatePhoneNumber(String number,
 byte typeToUpdate);
 public Vector getPhoneList();

 public AddressLocal getHomeAddress();
 public void setHomeAddress(AddressLocal address);

 public CreditCardLocal getCreditCard();
 public void setCreditCard(CreditCardLocal card);

 public Collection getPhoneNumbers();
 public void setPhoneNumbers(Collection phones);

 public Collection getReservations();
 public void setReservations(Collection reservations);
}

In a sense, the local interface is a superset of the methods available in the remote interface,
adding additional methods for direct control of relationship fields.

Each component (client program, JSP page, other EJB, etc.) that needs to use the Customer EJB
will obtain either the local or remote home interface, then use this to obtain either a local or
remote reference to the desired bean.

 Important: Don’t confuse multiple interfaces with multiple bean instances! Both references
refer to the same business object and underlying database row, and calls to both interfaces
will result in execution of the same CustomerBean.java code. Your choice of interface will,

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

190 Buy the printed version of this book at http://www.titan-books.com

however, affect performance and remote-access capability, as discussed in Chapter 5 of the
EJB book.

Referring back to the TravelAgentEJB section of the ejb-jar.xml file, you can see that we’ve
decided to make the CustomerHomeRemote interface available to the bean for lookup in JNDI
by including an <ejb-ref> element rather than an <ejb-local-ref> element. Somewhere in
the TravelAgentEJB we must look up the home interface for the Customer EJB and we must
require the remote interface rather than the local interface for some reason. You’ll find the
remote reference used in the buildSampleData method where we require a CustomerRemote
reference in order to call the create method for Reservation beans.

Moving down ejb-jar.xml to the ReservationEJB section, you’ll find an <ejb-local-ref>
section in the definition for this entity bean:

<entity>
 <ejb-name>ReservationEJB</ejb-name>
 <local-home>com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 <ejb-class>com.titan.reservation.ReservationBean</ejb-class>
 ...
 <primkey-field>id</primkey-field>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CustomerHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.customer.CustomerHomeLocal
 </local-home>
 <local>com.titan.customer.CustomerLocal</local>
 </ejb-local-ref>
 <security-identity><use-caller-identity/></security-identity>
</entity>

Why would an entity bean like Reservation need to look up the local home interface for the
Customer EJB? Recall that we’ve modified the Reservation bean to include a create method
that accepts a CustomerRemote reference as a parameter. The Reservation EJB has a many-to-
many relationship with Customer which should be initialized using the passed-in Customer
remote reference, but CMP relationships always use local references, not remote references. To
initialize the relationship, the Reservation bean's create method must convert the remote
Customer reference to a local Customer reference.

To perform this conversion and obtain a local reference, the Reservation's ejbPostCreate
method uses the primary key obtained from the passed-in Customer remote reference to look up
the local reference for the same Customer. It then places that local reference in the relationship
field customers, thereby linking this Reservation bean to the desired Customer bean:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 191

ReservationBean.java
public void ejbPostCreate(CustomerRemote customer,
 CruiseLocal cruise,
 CabinLocal cabin, double price)
 throws javax.ejb.CreateException
{
 System.out.println("ReservationBean::ejbPostCreate");
 setCruise(cruise);
 // Our bean has many cabins, use the cmr set method here..
 Set cabins = new HashSet();
 cabins.add(cabin);
 this.setCabins(cabins);
 try {
 Integer primKey = (Integer)customer.getPrimaryKey();
 javax.naming.Context jndiContext = new InitialContext();
 CustomerHomeLocal home =
 (CustomerHomeLocal)jndiContext.lookup(
 "java:comp/env/ejb/CustomerHomeLocal");
 CustomerLocal custL = home.findByPrimaryKey(primKey);
 // Our bean has many customers, use the cmr set here..
 Set customers = new HashSet();
 customers.add(custL);
 this.setCustomers(customers);
 } catch (RemoteException re) {
 throw new CreateException(
 "Invalid Customer - Bad Remote Reference");
 } catch (FinderException fe) {
 throw new CreateException(
 "Invalid Customer - Unable to Find Local Reference");
 } catch (NamingException ne) {
 throw new CreateException(
"Invalid Customer - Unable to find CustomerHomeLocal Reference");
 }
}

The remaining sections of the ejb-jar.xml descriptor file contain the relationship and assembly
information we’ve covered in previous exercises.

Examine the WebLogic-Specific Files/Components

The two WebLogic-specific descriptor files are also longer than the ones you’ve encountered
before, weighing in at 320+ lines for weblogic-ejb-jar.xml and 360+ lines for the CMP descriptor
file. For the most part, they just contain more of what you’ve encountered in previous exercises.
We’ll direct your attention to a few details, starting in the weblogic-ejb-jar.xml file.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

192 Buy the printed version of this book at http://www.titan-books.com

The first thing to note in the weblogic-ejb-jar.xml file is that it includes a section that corresponds
to each <ejb-ref> and <ejb-local-ref> section in the ejb-jar.xml file. The TravelAgentEJB
section of ejb-jar.xml declared all the bean home interfaces that should be available to the
TravelAgent bean:

ejb-jar.xml
<ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>

 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>

 com.titan.processpayment.ProcessPaymentRemote
 </remote>
</ejb-ref>
<ejb-ref>
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>

 com.titan.customer.CustomerHomeRemote
 </home>
 <remote>com.titan.customer.CustomerRemote</remote>
</ejb-ref>
<ejb-local-ref>
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>

 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
</ejb-local-ref>

...

<ejb-local-ref>
 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>

 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
</ejb-local-ref>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 193

weblogic-ejb-jar.xml contains a corresponding section, in the <weblogic-enterprise-bean>
element for the TravelAgentEJB:

weblogic-ejb-jar.xml
<weblogic-enterprise-bean>

 <ejb-name>TravelAgentEJB</ejb-name>
 <stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>100</max-beans-in-cache>
 <idle-timeout-seconds>300</idle-timeout-seconds>
 </stateful-session-cache>
 </stateful-session-descriptor>

 <reference-descriptor>
 <resource-description>
 <res-ref-name>jdbc/titanDB</res-ref-name>

 <jndi-name>titan-dataSource</jndi-name>
 </resource-description>
 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/ProcessPaymentHomeRemote
 </ejb-ref-name>
 <jndi-name>ProcessPaymentHomeRemote</jndi-name>
 </ejb-reference-description>
 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 </ejb-reference-description>
 <ejb-local-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <jndi-name>CabinHomeLocal</jndi-name>
 </ejb-local-reference-description>
 ...
 <ejb-local-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>
 <jndi-name>ReservationHomeLocal</jndi-name>
 </ejb-local-reference-description>
 </reference-descriptor>

 <jndi-name>TravelAgentHomeRemote</jndi-name>
</weblogic-enterprise-bean>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

194 Buy the printed version of this book at http://www.titan-books.com

Note that <ejb-ref> elements in ejb-jar.xml have corresponding <ejb-reference-
description> elements here, while <ejb-local-ref> elements in ejb-jar.xml have matching
<ejb-local-reference-description> elements here. These elements map the JNDI ENC
lookup names back to the actual JNDI names WebLogic uses for these components.

As shown in the listing above, stateful session beans have additional descriptor elements you’ve
not encountered before:

 <stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>100</max-beans-in-cache>
 <idle-timeout-seconds>300</idle-timeout-seconds>
 </stateful-session-cache>
 </stateful-session-descriptor>

The <max-beans-in-cache> element defines the maximum number of instances available for
immediate use in the instance pool. If necessary, the container will passivate inactive beans to
allow for new requests. Passivated beans that remain inactive for the length of time specified in
the <idle-timeout-seconds> element are subject to removal from disk storage. See the on-
line documentation for more information on caching strategies used for stateful session beans.

The next interesting feature is in the CustomerEJB section. At the bottom you will see two
separate JNDI-name elements:

<weblogic-enterprise-bean>

 <ejb-name>CustomerEJB</ejb-name>
 ...
 <jndi-name>CustomerHomeRemote</jndi-name>
 <local-jndi-name>CustomerHomeLocal</local-jndi-name>

</weblogic-enterprise-bean>

This descriptor is telling WebLogic to register both a remote and a local home interface in the
JNDI tree, using the slightly different names specified in the respective elements. Beans will
create reference elements in ejb-jar.xml and weblogic-ejb-jar.xml mapping JNDI ENC names to
either the remote or local interface for the Customer EJB depending on their needs. For example,
the previous section for TravelAgentEJB mapped the remote reference thus…

 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <jndi-name>CustomerHomeRemote</jndi-name>
 </ejb-reference-description>

…while the ReservationEJB, which needs a local interface, mapped the JNDI ENC name to the
local JNDI name thus:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 195

 <ejb-local-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/CustomerHomeLocal</ejb-ref-name>
 <jndi-name>CustomerHomeLocal</jndi-name>
 </ejb-local-reference-description>

The rest of the weblogic-ejb-jar.xml file and everything in the weblogic-cmp-rdbms-jar.xml file
are identical to the previous versions of these files from Exercise 7.3 and 12.1.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server to deploy the new titanejb.jar file.

If you bring up the WebLogic console for the domain, you should see both versions of the
Customer home interface registered in the JNDI tree. To open the JNDI tree view for a server,
click on servers in the navigation tree on the left to open the list of servers, right-click on the
myserver node, and select View JNDI tree. If you click on the CustomerHomeRemote
name, the right pane should display something like this:

Figure 44:CustomerHomeRemote binding in JNDI tree

If you click on CustomerHomeLocal in the list, you should see something like this:

Figure 45:CustomerHomeLocal binding in JNDI tree

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

196 Buy the printed version of this book at http://www.titan-books.com

The important thing to note is that the object registered with the name CustomerHomeLocal is
actually the WebLogic-generated Customer_LocalHomeImpl object itself, while the other
registration is a “proxy” or “stub” object with information about the network address of the home
implementation, etc. Obviously the local reference will be much faster and is more suitable for,
say, caching in a session bean.

Examine and Run the Client Applications

Three client programs available in the download exercise the new TravelAgent EJB and the
methods it makes available:

♦ Client_125.java uses the buildSampleData method to create Customer, Cabin, Ship, and
Cruise objects for use in this exercise.

♦ Client_126.java uses the bookPassage method to reserve for a Customer a specified Cabin
on a particular Cruise.

♦ Client_127.java lists available cabins for a specific Cruise having a desired number of beds
using the listAvailableCabins method.

Client_125.java

This example program uses the buildSampleData method to create Customer, Cabin, Ship, and
Cruise objects for use in this exercise. Ensure the non-sequence workbook tables in the database
are empty before running this program.

When you run the Client_125.java program, it will display some information about the beans
created by the buildSampleData method:

C:\work\ejbbook\ex12_2>java com.titan.clients.Client_125
Calling TravelAgentBean to create sample data..
Created customers with IDs 1 and 2..
Created ships with IDs 101 and 102..
Created cabins on Ship A with IDs 100-109
Created cabins on Ship B with IDs 200-209
Created cruises on ShipA with IDs 180, 181, 182
Created cruises on ShipB with IDs 183, 184, 185
Made reservation for Customer 1 on Cruise 180 for Cabin 103
Made reservation for Customer 1 on Cruise 185 for Cabin 208
Made reservation for Customer 2 on Cruise 181 for Cabin 105
Made reservation for Customer 2 on Cruise 185 for Cabin 202

Please note the primary key values the program uses for Cabin beans and Cruise beans associated
with each of the two ships (the bold lines in the listing above). The program cannot control the
Cruise IDs because they are generated automatically by the container-managed persistence code,
using the CRUISE_SEQUENCE table in the database. When you execute the Client_126 example
program you will need to specify a Cruise ID and a Cabin ID that are related to a particular Ship.
For example, Cruise 180 and Cabin 101 are both associated with Ship A.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 197

Client_126.java

The Client_126.java example program uses the TravelAgent bean to demonstrate the steps
required to book a cabin on a cruise. The program reads command-line arguments to determine
the desired Customer, Cruise, Cabin, and booking price. The first three arguments must be the
actual primary keys of the desired beans.

Examine the code in the Client_126.java file, paying particular attention to the steps required to
book a cruise using the TravelAgent EJB. First we obtain references to the remote home
interfaces of the Customer and TravelAgent beans:

Context jndiContext = getInitialContext();
Object obj = jndiContext.lookup("TravelAgentHomeRemote");
TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(obj,TravelAgentHomeRemote.class);

obj = jndiContext.lookup("CustomerHomeRemote");
CustomerHomeRemote custhome = (CustomerHomeRemote)
 PortableRemoteObject.narrow(obj,CustomerHomeRemote.class);

Next, we use the first command-line argument to acquire a remote reference to the desired
Customer bean:

Integer customerID = new Integer(args[0]);
CustomerRemote cust = custhome.findByPrimaryKey(customerID);

If this lookup fails, a FinderException will be thrown and the entire method will abort.

Next we create an instance of the TravelAgent stateful session bean and supply it with our
Customer remote reference, passing it as a parameter to the create method:

TravelAgentRemote tagent = tahome.create(cust);

The TravelAgent EJB is a stateful session bean, not a stateless session bean, so the container
directs the next two calls to the same instance of the bean:

tagent.setCruiseID(cruiseID);
tagent.setCabinID(cabinID);

These lines continue to modify the session bean's state, preparing it for the final bookPassage
call to follow. The next few lines create a CreditCardDO object for use in booking the
reservation (no, it’s not my actual AMEX card so don’t even try it):

Calendar expdate = Calendar.getInstance();
expdate.set(2003,1,5);
CreditCardDO card = new CreditCardDO(
 "370000000000002",expdate.getTime(),"AMERICAN EXPRESS");

Clearly, in a real application all these hard-coded items would be retrieved from the Customer
bean, an HTML form, or through some other method, but the code would not change materially
from the simple steps shown here.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

198 Buy the printed version of this book at http://www.titan-books.com

Finally, the moment the Customer has been waiting for: the actual call to make the booking:
TicketDO ticket = tagent.bookPassage(card,price);

Review the code in the bookPassage method in TravelAgentBean.java if you need to refresh
your memory about what it does. The return type is a value object containing a description of the
booking, which we display proudly:

System.out.println("Result of bookPassage:");
System.out.println(ticket.description);

Don’t forget to call remove on the reference to the stateful session bean:

tagent.remove();

This call invalidates our remote reference, ensuring that we don’t use it again, and informs the
container that we are done with the bean and it is free to use that “slot” in the instance pool for a
different user’s bean.

If you repeatedly forget to remove the reference, eventually the instance pool will fill up and the
container will be forced to passivate beans that haven't been accessed recently, to make room for
new requests. Finally, when the timeout period (controlled by the <idle-timeout-secs>
element) for the bean is reached, the stateful bean is removed entirely by the container. The
client will receive an exception if he or she attempts to use that bean instance again.

Here is a typical command line and the resulting output from the client program:
...\ex12_2>java com.titan.clients.Client_126 1 180 101 2000.0
Finding reference to Customer 1
Starting TravelAgent Session...
Setting Cruise and Cabin information in TravelAgent..
Booking the passage on the Cruise!
Ending TravelAgent Session...
Result of bookPassage:
Bob Smith has been booked for the Alaska Cruise cruise on ship
Nordic Prince.
 Your accommodations include Suite 101 a 1 bed cabin on deck level
1.
 Total charge = 2000.0

Note that the command line above specified a Cruise ID of 180 and a Cabin ID of 101. If you
supply different command-line arguments, remember to check their values against the output of
Client_125 to ensure that you are giving Client_126 valid Cruise and Cabin IDs. This program has
been simplified to demonstrate core logic more clearly, and presents a variety of opportunities for
error:

♦ There is no mechanism to select the reservation date or credit card information.

♦ Nothing prevents booking passage on a cruise on Ship A and a cabin on Ship B.

♦ Nothing prevents booking the same Cabin multiple times for the same cruise.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 199

Experiment with the example program if you care to:

♦ Try booking a cruise using an expired credit card and verify that the exception raised in the
ProcessPayment call made toward the end of bookPassage prevents the program from
committing any of the booking process to the database.

♦ Find a way to avoid booking the same Cabin twice for the same Cruise. You might try creating
a new method in the TravelAgent bean that checks for a conflict by joining RESERVATION and
RESERVATION_CABIN_LINK in the manner you saw in the listAvailableCabins
method. Have the method throw an exception if the desired Cabin is already booked for the
specified Cruise, and have bookPassage handle the exception appropriately.

Client_127.java

This example demonstrates the listAvailableCabins method of the TravelAgent EJB. It
accepts two command-line parameters, CruiseID and bed count, and displays a list of the Cabins
having that bed count that are available for that Cruise:

C:\work\ejbbook\ex12_2>java com.titan.clients.Client_127 180 1
Starting TravelAgent Session...
Setting Cruise information in TravelAgent..
Ending TravelAgent Session...
Result of listAvailableCabins:
100,Suite 100,1
102,Suite 102,1
104,Suite 104,1
105,Suite 105,1
106,Suite 106,1
107,Suite 107,1
108,Suite 108,1
109,Suite 109,1

The code itself is very straightforward: We simply obtain a reference to a TravelAgent bean by
calling create with a null Customer reference (we aren’t planning to use it for a Customer, so
this hurts nothing), set the Cruise reference in the bean, and invoke the listAvailableCabins
method:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

200 Buy the printed version of this book at http://www.titan-books.com

Integer cruiseID = new Integer(args[0]);
int bedCount = new Integer(args[1]).intValue();

Context jndiContext = getInitialContext();
Object obj = jndiContext.lookup("TravelAgentHome");
TravelAgentHomeRemote tahome = (TravelAgentHomeRemote)
 PortableRemoteObject.narrow(obj, TravelAgentHomeRemote.class);

TravelAgentRemote tagent = tahome.create(null);

tagent.setCruiseID(cruiseID);

String[] results = tagent.listAvailableCabins(bedCount);

If this seems like a strange way to find the cabins available, that's because it probably is. More
common would be a stateless session bean with a method expecting the same two parameters, or
perhaps a “finder” or “ejbSelect” method in the Cabin bean that accepts the required parameters
and returns a collection of local references to Cabin beans. The primary purpose of these
examples is to explore possible techniques for developing beans and queries rather than to
recommend the best design pattern for a given problem.

Exercise 13.1 requires the sample data created in this exercise. Do not empty the database tables
before proceeding to the next exercise.

Examine and Run the Client JSP Pages

Three client JSP pages, Client_125.jsp, Client_126.jsp, and Client_127.jsp, duplicate the functions
of the Java client applications described above.

The ant dist task should have copied the example JSP pages to the webapp directory in the
titanapp exploded .ear file, making them available using the standard URLs:

http://servername:7001/webapp/Client_125.jsp

Note that a JSP page running in the same JVM as the EJB components can access the local
interface for beans directly, but these pages do not make use of this ability.

 If the flexibility to host the web application and EJB components on different servers is
important to you, use remote interfaces in JSP pages and servlets.

As noted above, Exercise 13.1 requires the sample data created in this exercise. Do not empty the
database tables before proceeding to the next exercise.

201

Exercises for Chapter 13

202

Exercise 13.1:
JMS as a Resource
In this exercise we will modify the TravelAgent EJB to publish a simple text message on a JMS
topic when a reservation is made.

Download and Build the Example Programs

Download and extract the ex13_1 directory in the normal manner.

The bookPassage method in the TravelAgent EJB has been modified to publish a message in a
JMS Topic when the reservation is complete:

TravelAgentBean.java
public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {
 ...
 String ticketDescription = ticket.toString();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/TopicFactory");

 Topic topic = (Topic)
 jndiContext.lookup("java:comp/env/jms/TicketTopic");

 TopicConnection connect = factory.createTopicConnection();
 TopicSession session = connect.createTopicSession(false,0);
 TopicPublisher publisher = session.createPublisher(topic);

 TextMessage textMsg = session.createTextMessage();
 textMsg.setText(ticketDescription);

 System.out.println(
 "Sending text message to jms/TicketTopic..");
 publisher.publish(textMsg);

 connect.close();

 return ticket;
}

Note the use of jms/TopicFactory and jms/TicketTopic in the JNDI lookup calls. Similar to
previous lookups for jdbc/titanDB and other EJBs, these lookups require <resource-ref> tags
in ejb-jar.xml as well as mapping tags in weblogic-ejb-jar.xml.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 203

Also, note the parameters in the createTopicSession method call. Despite the specification
which states that these parameters should be ignored for any JMS resource obtained using the
JNDI ENC, WebLogic will not correctly publish the message unless the first parameter is false.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Configure the Required JMS Components

This exercise requires a number of new JMS components in the WebLogic ejbbook domain. We
will walk you through the steps needed to create and configure the components, summarized as
follows:

1. Create the jmsstore directory in the ejbbook domain root directory, for use by a JMSFileStore
you will create.

2. Create a JMS Connection Factory called Titan Topic Factory with the JNDI name
titan-TopicFactory.

3. Create a JMSFileStore called TitanJMSStore, which will use the jmsstore directory.

4. Create a JMSServer called TitanJMSServer, which uses the TitanJMSStore.

5. Configure a JMSTopic in this server called Titan Ticket Topic with the JNDI name titan-
TicketTopic.

First, use Explorer or a command prompt to navigate to the ejbbook root directory for your
domain. Create a new subdirectory of it called jmsstore to contain the persistent information for
a JMS Store that you will be creating presently.

Next, boot the ejbbook domain and open the WebLogic console application. Open the JMS folder
in the navigation pane on the left side of the console. Click on the Connection Factories folder
and you should see an empty list of Connection Factories.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

204 Buy the printed version of this book at http://www.titan-books.com

Click on the Configure a new JMS Connection Factory... link and fill out the resulting
form:

Figure 46: Creating the Titan Topic Factory

Be precise about the JNDI name titan-TopicFactory because the resource reference
jms/TopicFactory is mapped to this JNDI name in the ejb-jar.xml file.

Click on Create to create the new factory. Next, select the Transactions tab and enable User
Transactions for this factory:

Figure 47: Enabling User Transactions for Titan Topic Factory

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 205

This option ensures that JMS activity using a connection obtained through this factory will be
part of any container-managed or explicit transaction which might be active. Apply this change,
then click on the Targets tab and move the myserver entry from the Available list to the
Chosen list to make this factory available on the server. Apply this change. In the navigation
pane's JMS area, click on the Stores folder. You should see an empty list of JMS Stores for the
domain. We will be using a file-based JMS Store, so click on the link to Configure a new
JMSFile Store… and fill out the resulting form:

Figure 48: Creating the Titan JMS Store

Click on Create to save this information. Verify you’ve created this new directory under the
ejbbook directory before going on to create and target the JMS Server.

You can now create the JMS Server for the ejbbook domain. In the navigation pane's JMS area,
click on the Servers folder. You should see an empty list of JMS Servers for this domain. Click
on the link to Configure a new JMS Server… and fill out the resulting form:

Figure 49: Creating the Titan JMS Server

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

206 Buy the printed version of this book at http://www.titan-books.com

Click on Create to continue. Click on the Targets tab and make sure this new JMSServer is
targeted to the myserver server. Apply this change and you are ready to proceed to the next
step.

Open the new TitanJMSServer folder in the navigation pane and click on the Destinations
folder. An empty list of Topics and Queues should appear on the right side of the screen. You
need to create the Topic for this exercise, so click on the link to Configure a new JMSTopic…
and fill out the resulting form:

Figure 50: Creating the Ticket Topic

Click on Create and the new Topic is ready for use. Note that the JNDI name for the Topic,
titan-TicketTopic, will appear in the WebLogic-specific descriptor file as a mapping element.

Review all the JMS-related components you’ve created in the console. Verify that each of these is
properly configured in your domain before attempting to deploy the new titanejb.jar file or run
the example programs.

♦ JMS Connection Factory

♦ Name: Titan Topic Factory

♦ JNDI Name: titan-TopicFactory

♦ Targeted to myserver server

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 207

♦ JMS Store

♦ Name: TitanJMSStore

♦ Type: JMSFileStore

♦ Directory: ./config/ejbbook/jmsstore

♦ This directory exists in ejbbook root directory

♦ JMS Server

♦ Name: TitanJMSServer

♦ Store: TitanJMSStore

♦ JMS Destination

♦ Name: Ticket Topic

♦ Type: JMSTopic

♦ JNDI Name: titan-TicketTopic

Examine the Standard EJB Descriptor File

The ejb-jar.xml file for this exercise is nearly identical to the file from Exercise 12.2; we've added
only some additional <resource-ref> tags in the descriptor information for the TravelAgent
EJB:

<session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <home>com.titan.travelagent.TravelAgentHomeRemote</home>
 <remote>com.titan.travelagent.TravelAgentRemote</remote>
 <ejb-class>com.titan.travelagent.TravelAgentBean</ejb-class>
 ...
 <resource-ref>

<res-ref-name>jms/TopicFactory</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Container</res-auth>

 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/TicketTopic</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>
</session>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

208 Buy the printed version of this book at http://www.titan-books.com

Examine the WebLogic-Specific Files/Components

The WebLogic-specific descriptor files are also nearly identical to their counterparts in Exercise
12.2; we've added only some additional tags to map the generic resources specified in the
ejb-jar.xml file to specific JNDI names in the domain:

weblogic-ejb-jar.xml
<weblogic-enterprise-bean>
 <ejb-name>TravelAgentEJB</ejb-name>
 ...
 <reference-descriptor>
 ...
 <resource-description>
 <res-ref-name>jms/TopicFactory</res-ref-name>
 <jndi-name>titan-TopicFactory</jndi-name>
 </resource-description>
 <resource-env-description>
 <res-env-ref-name>jms/TicketTopic</res-env-ref-name>
 <jndi-name>titan-TicketTopic</jndi-name>
 </resource-env-description>
 ...
 </reference-descriptor>
 <jndi-name>TravelAgentHome</jndi-name>
</weblogic-enterprise-bean>

This file needs no additional JMS-related descriptor elements to configure the JMS components.
All of the configuration elements for the JMS components are stored in the domain configuration
file, config.xml. Feel free to browse through this file and locate the elements related to the JMS
Store, JMS Server, JMS Connection Factory, and JMS Topic created earlier through the
Administration Console.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

Examine the WebLogic server output during startup to ensure that no JMS-related error
messages are displayed. If errors appear, read them carefully and make appropriate corrections
to the components you just created.

Verify proper deployment of the new JMS components by examining the JNDI tree for the server
in the normal manner and confirming that the new registrations titan-TopicFactory and
titan-TicketTopic are present. If these components are not registered properly in the JNDI tree,
check that the ConnectionFactory and JMSServer components are targeted to the myserver
server.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 209

Examine and Run the Client Applications

The client applications in this exercise require the sample data created in Exercise 12.2. If you
deleted the sample data from the database, return to the Exercise 12.2 work root directory
(/work/ejbbook/ex12_2) and run the Client_125 program again to re-create the sample data.

This exercise contains a copy of the Client_126.java example program from the previous exercise,
along with a working version of the example program in the EJB book, JmsClient_1.java.

The Client_126.java program is provided to enable you to create reservations for a specific
Customer, Cruise, Cabin, and price using the same syntax as in Exercise 12.2:

java com.titan.clients.Client_126 1 180 101 2000.0

As in the preceding exercise, it is important that the Customer ID and Cruise ID represent valid
data in the database created during the execution of Client_125. Run the Client_126 example to
verify that it continues to operate properly with the revised version of the TravelAgent EJB and
produces the same output as before.

The JmsClient_1.java program you downloaded is patterned after the example in the EJB book.
It creates the necessary JMS objects to become a subscriber to the titan-TicketTopic JMS Topic
and waits indefinitely for messages to arrive:

public JmsClient_1() throws Exception {

 Context jndiContext = getInitialContext();

 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndiContext.lookup("titan-TopicFactory");

 Topic topic = (Topic)jndiContext.lookup("titan-TicketTopic");

 TopicConnection connect = factory.createTopicConnection();

 TopicSession session =
 connect.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

 TopicSubscriber subscriber = session.createSubscriber(topic);

 subscriber.setMessageListener(this);

 System.out.println(
 "Listening for messages on titan-TicketTopic...");

 connect.start();
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

210 Buy the printed version of this book at http://www.titan-books.com

As shown in the listing, the download version of this program uses hard-coded factory and topic
names rather than reading them from the command-line arguments, simply to reduce the
potential for typographical errors when running the example.

When a message arrives, the onMessage method will be invoked:

public void onMessage(Message message) {
 try {
 TextMessage textMsg = (TextMessage)message;
 String text = textMsg.getText();
 System.out.println("\n RESERVATION RECEIVED:\n"+text);
 } catch(JMSException jmsE) {
 jmsE.printStackTrace();
 }
}

The program will extract and display the text from the JMS message.

Open a new command prompt or telnet window, navigate to the ex13_1 directory, set the
environment variables properly, and run the JmsClient_1 application using the standard
command-line syntax:

C:\work\ejbbook\ex13_1>setenv
...
C:\work\ejbbook\ex13_1>java com.titan.clients.JmsClient_1
Listening for messages on titan-TicketTopic...

The client should report that it is listening for messages on titan-TicketTopic and then simply
wait.

While the JmsClient_1 application is running, open the WebLogic Administration Console and
navigate to the Services/JMS page for myserver. Click on the link to Monitor all Active JMS
Servers... to see a few statistics about our JMSServer:

Figure 51: Monitoring the Titan JMS Server

Note that WebLogic reports a single connection, our JmsClient_1 program, and a single active
destination, the Titan Ticket Topic. You may view additional information for these objects by
clicking on the hourglass icon or number hyperlink in the table.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 211

Leaving JmsClient_1 running in its own window, run the Client_126 example program from a
different window to create a reservation. Shortly afterward you should see JmsClient_1 display a
confirmation message:

C:\work\ejbbook\ex13_1>java com.titan.clients.JmsClient_1
Listening for messages on titan-TicketTopic...

 RESERVATION RECEIVED:
Bob Smith has been booked for the Alaska Cruise cruise on ship
Nordic Prince.
 Your accommodations include Suite 100 a 1 bed cabin on deck level
1.
 Total charge = 999.0

The WebLogic console also allows monitoring of JMS Destinations in the domain. There are a
variety of ways to navigate to the monitoring screens, but one easy technique is to navigate to the
TitanJMSServer folder and click on the Monitoring tab:

Figure 52: Monitoring JMS Server Activity

Click on the Monitor all Active JMS Destinations... link to see a list of the JMS destinations
defined in this JMS Server and statistics regarding active message consumers, number of
messages in queue, messages delivered, etc. Activate the automatic refresh feature for this
window and watch these values change as you make additional reservations and start and stop
JmsClient_1 applications.

Optional uses of Client_126 and this simple subscriber example program bring to light some
characteristics of JMS Topics. Perform the activities if you are interested in learning more about
JMS Topic behavior.

A JMS Topic does not save messages and does not care if there are any active subscribers when a
message is published. To test this feature:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

212 Buy the printed version of this book at http://www.titan-books.com

1. Stop the copy of JmsClient_1 currently running so there is no active destination listening on
the titan-TicketTopic JMS Topic.

2. In the Administration Console, verify that the subscriber/consumer count is zero (use the
refresh icon if necessary).

3. Run Client_126 to create a reservation and publish a message on the Topic. The TravelAgent
EJB will happily publish a message on the Topic even though it has no active listeners.

4. Start JmsClient_1 again. The program will subscribe to the Topic – but too late to pick up the
message sent in step 3.

A JMS Topic can have multiple subscribers, all of which will receive the message published to the
Topic. To see this behavior:

1. Start multiple copies of JmsClient_1 in separate command-prompt or telnet windows.

2. Verify that the Administration Console reports multiple active consumers on this Topic.

3. Run the Client_126 example program to create a reservation and publish a message on the
Topic.

4. Check the active JmsClient_1 programs to see that all display the same reservation
confirmation.

Examine and Run the Client JSP Pages

There are no JSP-based examples in this exercise. The Client_126.jsp should still be available in
the web application if you find it more convenient for creating reservations.

213

Exercise 13.2:
The Message-Driven Bean
The final exercise in this workbook demonstrates three additional features of JMS and EJB 2.0:

♦ Configuration and use of a JMS Queue

♦ Message-Driven Beans listening on a JMS Queue

♦ JMS Reply-To Queues

The number of JMS Queues, EJB components, and client programs required to implement this
exercise might seem a little overwhelming at first. The basic approach is summarized in the
following figure:

Figure 53: Basic approach for message-driven bean example

1. The JmsClient_ReservationProducer program places a reservation request in the
Reservation JMS Queue.

2. The Reservation Processor message-driven bean processes the request using the EJBs created
in previous exercises and places a TicketDO message in the Ticket JMS Queue.

3. The JmsClient_TicketConsumer client program listens for this message and displays
confirmation information.

This exercise will also give you an opportunity to test the performance of your EJB environment
and examine the behavior of WebLogic Server under load.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

214 Buy the printed version of this book at http://www.titan-books.com

Download and Build the Example Programs

Download and extract the ex13_2 directory in the usual manner.

A single new EJB component is added in this exercise, the ReservationProcessor Message-Driven
Bean. This EJB is designed to perform essentially the same booking activity as the TravelAgent
EJB from Exercise 12.2, with the following changes:

♦ Booking activity occurs when a message containing all of the required data is placed in a
Reservation Queue.

♦ The resulting TicketDO object is placed in an ObjectMessage on a reply queue.

As described in the EJB book, the ReservationProcessor bean implements two interfaces:
javax.ejb.MessageDrivenBean and javax.jms.MessageListener. It contains two
important methods required to implement these interfaces:

ReservationProcessorBean.java
public void setMessageDrivenContext(MessageDrivenContext mdc){
 ejbContext = mdc;
 try {
 jndiContext = new InitialContext();
 } catch(NamingException ne) {
 throw new EJBException(ne);
 }
}

public void onMessage(Message message) {
 try {
 MapMessage reservationMsg = (MapMessage)message;

 Integer customerPk = (Integer)
 reservationMsg.getObject("CustomerID");
 ...
}

The container will call the onMessage method when a JMS Client application places a message
in the queue associated with this message-driven bean. The bean extracts fields from the
message, acquires references to the required Customer, Cruise, and Cabin EJBs, creates a
temporary CreditCardDO object, and performs the same business logic as the bookPassage
method in the TravelAgent EJB:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 215

ReservationHomeLocal resHome = (ReservationHomeLocal)
 jndiContext.lookup("java:comp/env/ejb/ReservationHome");

ReservationLocal reservation =
 resHome.create(customer, cruise, cabin, price, new Date());

Object ref =
 jndiContext.lookup("java:comp/env/ejb/ProcessPaymentHome");

ProcessPaymentHomeRemote ppHome = (ProcessPaymentHomeRemote)
PortableRemoteObject.narrow(ref, ProcessPaymentHomeRemote.class);

ProcessPaymentRemote process = ppHome.create();

process.byCredit(customer, card, price);

TicketDO ticket = new TicketDO(customer,cruise,cabin,price);

Rather than return the resulting TicketDO object, however, onMessage calls a helper method to
deliver the confirmation information to an interested recipient:

deliverTicket(reservationMsg, ticket);

The deliverTicket method performs all of the steps required to open a connection to a JMS
Queue and place the TicketDO in an ObjectMessage on the queue:

public void deliverTicket(MapMessage reservationMsg,
 TicketDO ticket)
throws NamingException, JMSException {

 // create a ticket and send it to the proper destination
 Queue queue = (Queue)reservationMsg.getJMSReplyTo();
 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/QueueFactory");
 QueueConnection connect = factory.createQueueConnection();
 QueueSession session = connect.createQueueSession(false,0);
 QueueSender sender = session.createSender(queue);
 ObjectMessage message = session.createObjectMessage();
 message.setObject(ticket);

 sender.send(message);

 connect.close();
}

This method obtains the ConnectionFactory using the typical JNDI ENC lookup with the resource
jms/QueueFactory, but where is the JMS Queue name in this code? Rather than hard-coding the

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

216 Buy the printed version of this book at http://www.titan-books.com

reply Queue name in the deliverTicket method, the JmsClient_ReservationProducer
program specifies the Queue to use for TicketDO delivery as a “Reply-To” Queue within the
incoming reservation message itself:

JmsClient_ReservationProducer.java
Queue ticketQueue =
 (Queue)jndiContext.lookup("titan-TicketQueue");
...
MapMessage message = session.createMapMessage();
message.setJMSReplyTo(ticketQueue);

This powerful feature of JMS allows each message to specify the proper reply queue, rather than
leaving this decision in the hands of the Reservation Processor EJB.

The details of the two client programs will be covered in a later section in this exercise.

Use ant dist to build the example code and place the titanejb.jar file in the correct directory.

Configure the Required JMS Components

This exercise uses two new JMS Queue components and a new JMS ConnectionFactory. We will
walk you through the steps needed to create and configure the components in WebLogic,
summarized as follows:

1. Create a JMS Connection Factory called Titan Queue Factory with the JNDI name
titan-TopicFactory.

2. Configure a JMSQueue in the TitanJMSServer server called Reservation Queue with the
JNDI name titan-ReservationQueue.

3. Configure a JMSQueue in the TitanJMSServer server called Ticket Queue with the JNDI
name titan-TicketQueue.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 217

First, boot the ejbbook domain and open the WebLogic console application. In the navigation
pane on the left side of the console, open the JMS folder and click on the Connection
Factories folder and you should see the Connection Factory you created in the last exercise:

Figure 54: Preparing to createl a new Connection Factory

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

218 Buy the printed version of this book at http://www.titan-books.com

Click on the link to Configure a new JMS Connection Factory... and fill out the resulting
form:

Figure 55: Creating the Titan Queue Factory

We recommend setting the Messages Maximum field higher than the default value of 10, to
allow the server to accept a larger number of JMS messages while others in the queue are
awaiting delivery to a listener. Click on Create to create this new JMS Connection Factory.

Next, select the Transactions tab and, as before, enable User Transactions for this factory:

Figure 56: Enabling User Transactions for Titan Queue Factory

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 219

This option ensures that JMS activity using a connection obtained through this factory will be
part of any container-managed or explicit transaction which might be active. Use the Targets
tab to assign this factory to the server myserver before continuing to the next step.

Next, in the navigation pane open the JMS folder and navigate to the JMS Server you created in
the last exercise (TitanJMSServer). Open this JMS Server and click on the Destinations folder
in the navigation pane. You should see the JMS Topic you built in the last exercise:

Figure 57: Preparing to create new Queues

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

220 Buy the printed version of this book at http://www.titan-books.com

You need to create another JMS Queue, so click on the Configure a new JMSQueue... link
and fill out the form:

Figure 58: Creating the Reservation Queue

Click on Create and the new Queue is ready for use. Note that its JNDI name,
titan-ReservationQueue, will appear in the WebLogic-specific descriptor file as a mapping
element, so be sure spelling and capitalization are as in the figure.

The ReservationProcessor EJB responds to the booking request by placing a message on a new
Ticket Queue, rather than publishing it on the Ticket Topic we used in the previous exercise. Click
on the Destinations folder one more time, choose the Configure a new JMSQueue... link,
and configure the Ticket JMS Queue as shown here:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 221

Figure 59: Creating the Ticket Queue

Review the list of JMS-related components you’ve created in the Console. Verify that each of
these is properly configured in your domain before attempting to deploy the new titanejb.jar file
or run the example programs. This list includes the components created in the last exercise as
well as the new ones:

♦ JMS Connection Factory

♦ Name: Titan Topic Factory

♦ JNDI Name: titan-TopicFactory

♦ Targeted to myserver server

♦ JMS Connection Factory

♦ Name: Titan Queue Factory

♦ JNDI Name: titan-QueueFactory

♦ Targeted to myserver server

♦ JMS Store

♦ Name: TitanJMSStore

♦ Type: JMSFileStore

♦ Directory: ./config/ejbbook/jmsstore

♦ This directory exists in ejbbook root directory

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

222 Buy the printed version of this book at http://www.titan-books.com

♦ JMS Server

♦ Name: TitanJMSServer

♦ Store: TitanJMSStore

♦ JMS Destination

♦ Name: Ticket Topic

♦ Type: JMSTopic

♦ JNDI Name: titan-TicketTopic

♦ JMS Destination

♦ Name: Reservation Queue

♦ Type: JMSQueue

♦ JNDI Name: titan-ReservationQueue

♦ JMS Destination

♦ Name: Ticket Queue

♦ Type: JMSQueue

♦ JNDI Name: titan-TicketQueue

Examine the Standard EJB Descriptor File

A single new section in the ejb-jar.xml descriptor file specifies deployment information for the
new ReservationProcessor EJB:

<message-driven>
 <ejb-name>ReservationProcessorEJB</ejb-name>
 <ejb-class>
 com.titan.reservationprocessor.ReservationProcessorBean
 </ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>MessageFormat = 'Version 3.4'
 </message-selector>
 <acknowledge-mode>auto-acknowledge</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 ...
</message-driven>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 223

The missing <ejb-ref> and <resource-ref> elements will be discussed after some
observations about these initial elements:

♦ The bean has no home or remote interface. Message-driven beans cannot be invoked through
any direct mechanism and have no need for create or find methods.

♦ The <message-selector> element instructs the container to pass to this bean only those
messages that have a property called MessageFormat, with a value equal to Version 3.4.

♦ This bean listens on a JMS Queue, but the queue name itself is not defined in this descriptor
file.

Next in the descriptor are <ejb-ref> tags providing access to the entity and stateless-session
beans required to process a reservation:

 <ejb-ref>
 <ejb-ref-name>ejb/ProcessPaymentHomeRemote</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.titan.processpayment.ProcessPaymentHomeRemote
 </home>
 <remote>
 com.titan.processpayment.ProcessPaymentRemote
 </remote>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/CustomerHomeRemote</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>
 com.titan.customer.CustomerHomeRemote
 </home>
 <remote>com.titan.customer.CustomerRemote</remote>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/CruiseHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cruise.CruiseHomeLocal
 </local-home>
 <local>com.titan.cruise.CruiseLocal</local>
 </ejb-local-ref>

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

224 Buy the printed version of this book at http://www.titan-books.com

 <ejb-local-ref>
 <ejb-ref-name>ejb/CabinHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.cabin.CabinHomeLocal
 </local-home>
 <local>com.titan.cabin.CabinLocal</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ReservationHomeLocal</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.titan.reservation.ReservationHomeLocal
 </local-home>
 <local>com.titan.reservation.ReservationLocal</local>
 </ejb-local-ref>

As in the previous exercises, these elements must have corresponding elements in the
weblogic-ejb-jar.xml descriptor file to provide the mapping to actual JNDI names.

The next element defines the default security context the bean should use when making calls to
other EJBs in the environment:

<security-identity>
<run-as><role-name>everyone</role-name></run-as>

</security-identity>

Finally, there is a <resource-ref> tag to allow the bean to access the JMS Queue Connection
Factory using the JNDI ENC syntax:

<resource-ref>
<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

This element will require a mapping element in the weblogic-ejb-jar.xml file to define the actual
factory name in the JNDI tree.

The rest of the ejb-jar.xml file is the same as in the previous exercise.

Examine the WebLogic-Specific Files/Components

The weblogic-ejb-jar.xml file contains a new section for the new ReservationProcessor EJB, but
is otherwise unchanged from the previous exercise. The new section defines deployment-specific
mapping information for the JNDI ENC lookup values and WebLogic-specific elements defining
pool behavior and security information:

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 225

<weblogic-enterprise-bean>
 <ejb-name>ReservationProcessorEJB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>50</max-beans-in-free-pool>
 <initial-beans-in-free-pool>5</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>titan-ReservationQueue
 </destination-jndi-name>
 </message-driven-descriptor>

 <reference-descriptor>
 <resource-description>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <jndi-name>titan-QueueFactory</jndi-name>
 </resource-description>
 <ejb-reference-description>
 <!-- Matches entry in ejb-jar.xml file -->
 <ejb-ref-name>ejb/ProcessPaymentHome</ejb-ref-name>
 <jndi-name>ProcessPaymentHome</jndi-name>
 </ejb-reference-description>
 ...
 </reference-descriptor>

 <run-as-identity-principal>guest</run-as-identity-principal>

 <jndi-name>ReservationProcessor</jndi-name>

</weblogic-enterprise-bean>

Interesting items in this section include:

♦ The <max-beans-in-free-pool> element, which limits the number of simultaneous
message-driven bean instances to 50, thereby limiting our concurrent message-handling
capability to this same value.

♦ The <destination-jndi-name> element, which defines the actual JMS Queue on which
this message-driven bean should be listening.

♦ The <run-as-identity-principal> element, which WebLogic requires because the role
name we chose in the <run-as> element in the ejb-jar.xml descriptor file actually maps to
multiple principals, and the bean must perform its activity as a single principal.

♦ The <jndi-name> element for the bean, which defines the name for this bean in the JNDI
tree – although there is no reason for our code to look the bean up and use it via this name.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

226 Buy the printed version of this book at http://www.titan-books.com

This file needs no additional JMS-related descriptor elements to configure the JMS components.
All of the configuration elements for the JMS components are stored in the domain configuration
file, config.xml, in the domain root directory. Feel free to browse through this file and locate the
elements related to the JMS Store, JMS Server, JMS Connection Factories, JMS Topic, and JMS
Queues created earlier through the Administration Console.

Deploy the EJB Components to WebLogic

The ant dist task copies the titanejb.jar file to the proper location in the ejbbook domain. Use the
redeploy task or reboot the server as needed to deploy the new titanejb.jar file.

Examine the WebLogic server output during startup to ensure that no JMS-related error
messages are displayed. If errors appear, read them carefully and make appropriate corrections
to the components you created in this exercise or the last.

Verify proper deployment of the new JMS components by examining the JNDI tree for the server
and confirming that the new registrations titan-QueueFactory, titan-TicketQueue, and
titan-ReservationQueue are present. If these components are not registered properly in the JNDI
tree, check that the ConnectionFactory and JMSServer components are targeted to the myserver
server.

Examine and Run the Client Applications

This exercise includes the two client applications described in the EJB book:

♦ JmsClient_ReservationProducer creates messages in the Reservation Queue

♦ JmsClient_TicketConsumer listens on the Ticket Queue for ticket confirmations

Both programs are simple JMS client applications, using straight JNDI calls to look up JMS
ConnectionFactory objects and Queue objects, and standard JMS techniques to manipulate
messages.

The client applications in this exercise require the sample data created in Exercise 12.2. If you
deleted the sample data from the database, return to the Exercise 12.2 work root directory
(/work/ejbbook/ex12_2) and run the Client_125 program again to re-create the sample data.

JmsClient_ReservationProducer.java

This application accepts two command-line arguments:
java JmsClient_ReservationProducer <cruiseID> <numrez>

The <cruiseID> argument is required because the program has no way to know which keys
were used during the execution of Client_125 to create the sample data used in this exercise. The
<numrez> argument specifies the number of reservations to create, allowing this program to be
used as a crude load generator.

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 227

The program uses JNDI to look up the required JMS components and prepares the Connection,
Session, and Sender objects needed to place messages on the Reservation Queue:

Context jndiContext = getInitialContext();

QueueConnectionFactory factory =
 (QueueConnectionFactory)
 jndiContext.lookup("titan-QueueFactory");

Queue reservationQueue =
 (Queue)jndiContext.lookup("titan-ReservationQueue");
Queue ticketQueue =
 (Queue)jndiContext.lookup("titan-TicketQueue");
QueueConnection connect = factory.createQueueConnection();
QueueSession session =
 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

QueueSender sender = session.createSender(reservationQueue);

Note that the program also uses JNDI to look up the Ticket Queue and obtains a reference to this
queue as well. The reason will become obvious when you examine the next section of code.

Next, the program loops the number of times specified by the second command-line parameter
(which we captured in the count variable), each time creating a MapMessage object containing
the information the ReservationProcessor EJB needs to perform a booking:

for (int i = 0; i < count; i++) {

 MapMessage message = session.createMapMessage();
 message.setJMSReplyTo(ticketQueue);
 message.setStringProperty("MessageFormat", "Version 3.4");
 message.setInt("CruiseID", cruiseID.intValue());
 message.setInt("CustomerID",i%2+1); // Customer 1 or 2 only
 message.setInt("CabinID",i%10+100); // cabins 100-109 only
 message.setDouble("Price", (double)1000+i);

 // the card expires in about 30 days
 Date expDate =
 new Date(System.currentTimeMillis()+43200000);

 message.setLong("CreditCardNum", 923830283029L);
 message.setLong("CreditCardExpDate", expDate.getTime());
 message.setString(
 "CreditCardType", CreditCardDO.MASTER_CARD);

 System.out.println("Sending reservation message #"+i);
 sender.send(message);
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

228 Buy the printed version of this book at http://www.titan-books.com

The program puts a variety of information in each MapMessage object:

♦ The Ticket Queue reference is placed in the JMSReplyTo attribute. It will be used by the
bean's deliverTicket method to obtain the correct reply destination for TicketDO
confirmations.

♦ The property MessageFormat is set to the proper value defined in the ejb-jar.xml file, to
ensure that our message-driven bean will receive this message.

♦ Parameters required by the ReservationProcessor EJB are placed in the message, including
customer, cruise, cabin, price, and credit-card information.

Note that we cannot pre-create a CreditCardDO object and place it in the MapMessage object
because MapMessage accepts only simple types such as Integer, String, etc. Even the
expiration date must be sent as a Long rather than as a java.util.Date object.

The program then places the MapMessage on the Reservation Queue for delivery by the JMS
services to the ReservationProcessor EJB.

Before running the JmsClient_ReservationProducer application, examine the other client
application in this exercise.

JmsClient_TicketConsumer.java

This program is a straightforward JMS listener, designed to accept messages from the Ticket
Queue and display the contents of the TicketDO object attached to the message. The steps
required to listen on a JMS Queue are very similar to the steps required to listen on a JMS Topic,
as JmsClient_1 did in the last exercise. In this program we connect to the desired Queue and wait
indefinitely for messages:

public JmsClient_TicketConsumer() throws Exception {

 Context jndiContext = getInitialContext();

 QueueConnectionFactory factory = (QueueConnectionFactory)
 jndiContext.lookup("titan-QueueFactory");
 Queue ticketQueue = (Queue)
 jndiContext.lookup("titan-TicketQueue");
 QueueConnection connect = factory.createQueueConnection();
 QueueSession session =
 connect.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);
 QueueReceiver receiver = session.createReceiver(ticketQueue);
 receiver.setMessageListener(this);

 System.out.println(
 "Listening for messages on titan-TicketQueue...");
 connect.start();
}

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 229

Note the hard-coded ConnectionFactory and Queue lookup names. When a message is delivered
to this listener, the onMessage method will be invoked:

public void onMessage(Message message) {

 try {
 ObjectMessage objMsg = (ObjectMessage)message;
 TicketDO ticket = (TicketDO)objMsg.getObject();
 System.out.println("********************************");
 System.out.println(ticket);
 System.out.println("********************************");
 }
 catch (JMSException jmsE) {
 jmsE.printStackTrace();
 }
}

This message extracts the TicketDO object from the message and displays the confirmation
information.

Open a separate command prompt or telnet window, navigate to the ex13_2 directory, set the
environment variables properly, and run the JmsClient_TicketConsumer application using the
standard command-line syntax:

C:\work\ejbbook\ex13_2>setenv
...
...\ex13_2>java com.titan.clients.JmsClient_TicketConsumer
Listening for messages on titan-TicketQueue...

The client should report that it is listening for messages on the Ticket Queue and then simply
wait. If you receive errors, ensure that the ejbbook domain is running and that
titan-QueueFactory and titan-TicketQueue are properly registered in the JNDI tree.

While JmsClient_TicketConsumer is running, open the WebLogic Administration Console,
navigate to the TitanJMSServer folder and click on the Monitoring tab. Click on the link to
Monitor all Active JMS Destinations... to view a list of the active Topic and Queue
destinations in the server:

Figure 60: Monitoring destinations in Titan JMS Server

Note the single active consumer registered on the TicketQueue and the multiple consumers
registered on the Reservation Queue. This page will be interesting to watch while the

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

230 Buy the printed version of this book at http://www.titan-books.com

JmsClient_ReservationProducer application is running, especially when many reservation
requests are made in rapid sucession. Use the refresh icon on the right side of the console to
activate automatic refresh for this display.

You may wonder where the 15 consumers for the Reservation Queue are coming from. We set the
<initial-beans-in-free-pool> element for the message-driven bean to only five, so why
are there 15 listeners on this queue? WebLogic registers interest in the queue on behalf of every
execute thread configured in the default execute queue in your domain. By default, WebLogic
uses 15 execute threads, hence 15 listeners on the Reservation Queue.

 You can change the number of execute threads on the default execute queue using the
Administration Console. Right-click on the server and choose View Execute Queues, pick
the default queue from the list presented on the right, and configure the Execute Thread
Count to the desired value. You need to reboot for this change to take effect. If you do so
now, remember to restart JmsClient_TicketConsumer before proceeding.

It is finally time to create some reservations using the new client program. Run the program
using the standard syntax, supplying a valid Cruise ID and requesting five iterations:

...>java com.titan.clients.JmsClient_ReservationProducer 180 5
Sending reservation message #0
Sending reservation message #1
Sending reservation message #2
Sending reservation message #3
Sending reservation message #4

The output in this window is not very interesting, but you should see a great deal of output in the
WebLogic server log, as well as some confirmation messages appearing in the window running
the JmsClient_TicketConsumer client application.

Examine the output in the WebLogic server log and compare the timing of the various messages
from the ReservationProcessor EJB, the ejbCreate methods on the Reservation EJB, and the
process method on the TravelAgent EJB. There should be evidence of simultaneous processing
of multiple reservations. We configured our instance pool for the ReservationProcessor EJB to
have multiple beans in the pool, so the container will fire up as many beans as it needs to process
the incoming messages, up to the limit set in the <max-beans-in-free-pool> element.

Now examine the output from the JmsClient_TicketConsumer program. You should see
reservation confirmation messages for the five reservations created by the producer program. If
you see the output, everything you built and configured in this exercise worked properly, and you
should pat yourself on the back for a job well done!

It is very possible that the reservation confirmation messages are not displayed in order from
Suite 100 to Suite 104, suggesting that they were not processed in the order in which they were
created and placed on the Reservation Queue. According to the specification, the container must
deliver the messages to a message-driven bean instance in the order they are placed in the queue.
How can the reservation confirmations be out of order?

By configuring multiple Reservation Processor beans in the instance pool you have allowed for
asynchronous processing of these requests, essentially giving up the right to pure first-in-first-out

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 231

processing of incoming reservation requests. In other words, the different bean instances are
racing to complete their work booking individual reservations, and there is no guarantee that the
beans will finish their work in the order they were started by incoming messages.

As an optional experiment, modify the weblogic-ejb-jar.xml file and change the “max beans” and
“initial beans” elements to the value 1 to specify a single message-driven bean instance. Re-build
and re-deploy your EJBs using ant dist and ant redeploy and re-run the producer program to
request five more reservations. The reservations should be processed sequentially in a true first-
in-first-out manner, albeit more slowly.

Refresh the console display if you need to, and note that the monitoring display shows five
messages received by each of the two queues in our system:

Figure 61: Monitoring destinations after running producer application

Two more optional experiments will demonstrate key differences between JMS Queues and JMS
Topics. In Exercise 13.1 you observed the behavior of the JMS Topic in the presence of none, one,
and multiple JmsClient_1 listening programs. Repeat these experiments with the new
JmsClient_TicketConsumer program, following these steps:

1. Stop the copy of the consumer program you currently have running. There is now no listener
active for the Ticket Queue JMS Queue.

2. Run the producer program to generate a few reservations. Everything should work normally
from the point of view of JmsClient_ReservationProducer and the ReservationProcessor
EJB, but no confirmation messages appear because no consumer program is running.

3. Re-start JmsClient_TicketConsumer. It should quickly display the confirmation messages for
the reservations created in Step 1, demonstrating that unlike the JMS Topic in the previous
exercise, messages in a JMS Queue will wait patiently for delivery until a listener is available.

4. Open another command-prompt or telnet window and start another copy of
JmsClient_TicketConsumer. There are now two consumers listening on the same queue.

5. Run the producer program to generate 10 reservations. Unless you are very unlucky, at least
some of the 10 confirmation messages should appear in each of the two consumer output
windows. None of the confirmation messages should appear in both outputs, demonstrating
that each message is delivered to one and only one consumer listening on the Queue.
Contrast this result with what you saw in Exercise 13.1, where both clients listening on the
same JMS Topic received every message published to the Topic.

Finally, you can use the JmsClient_ReservationProducer application as a crude load generator to
examine the performance of WebLogic and your EJB components. Ensure that your deployment

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

232 Buy the printed version of this book at http://www.titan-books.com

descriptor for the ReservationProcessor EJB is configured for at least 50 beans in the instance
pool and run the producer program to create 100, 200, or even 1000 reservations in rapid
succession. Output messages will be flying by in the WebLogic server log, and the consumer
applications will be displaying confirmation messages at a rapid pace.

Feel free to experiment with some of the following parameters to observe the changes in system
performance:

♦ The <max-beans-in-free-pool> element for the ReservationProcessor EJB – As we
pointed out a little earlier, setting this to a low value will eliminate multi-processing of
incoming reservation requests.

♦ The <max-beans-in-free-pool> element for the ProcessPayment EJB – Setting this to a
low value will limit the number of simultaneous calls to this bean and may reduce
performance.

♦ Maximum messages in the Titan Queue Factory JMS Connection Factory – Change this value
from the suggested 500 down to a small number such as 20. This reduction may cause the
producer program to slow down, as it is forced to wait to add new messages to the queue, but
it is unlikely to affect the overall processing time.

♦ The Default Delivery Mode in the Titan Queue Factory – Changing this from Persistent to
Non-Persistent will prevent Messages being written to the JMS Store when enqueued (or
deleted when dequeued) and performance may improve significantly – at the risk of losing
messages if the server crashes with messages in the Queue.

♦ Execute threads for the server – Too few threads will undoubtably slow the processing, but
too many can cause unnecessary context switching. Try values like 5, 15, 30, and 100.

♦ Maximum size of the titan-jdbcPool database connection pool – Depending on the
performance of your database, a small pool can easily limit the performance of your system.
Try values as high as 15 or 20, but don’t forget to increase the number of execute threads at
the same time, to ensure that there are always more execute threads than possible pool
connections.

A detailed discussion of performance testing, tuning, and WebLogic best practices is beyond the
scope of this workbook. BEA's on-line documentation includes basic performance guidelines (see
http://edocs.bea.com/wls/docs61/perform/index.html), and a recently-published book on J2EE
and WebLogic Server by Girdley, et. al. includes WebLogic configuration best practices.

Examine and Run the Client JSP Pages

There are no JSP-based examples in this exercise.

That's it! We hope this workbook has met your expectations and, along with the O'Reilly EJB
book, has given you a strong foundational understanding of EJB 2.0 and WebLogic Server. Write
us at the address provided on the web site (www.titan-books.com) and let us know how it went –
We're very interested in hearing from you.

http:///
http://www.titan-books.com/

WebLogic Workbook for Enterprise JavaBeans, 3rd Edition

Buy the printed version of this book at http://www.titan-books.com 233

Now get out there and build something!

Buy the printed version of this book at http://www.titan-books.com

About the Author

Greg Nyberg has over 15 years of experience in the design and development of object-oriented
systems, and specializes in large mission-critical systems using BEA WebLogic. Mr. Nyberg is the
founder of and a frequent speaker at the Minneapolis BEA Users' Group, and has spoken at the
BEA eWorld conference and other national conferences numerous times. Mr. Nyberg has also
authored and delivered training classes in C++, Forte, Java, and J2EE technologies, and
understands the importance of "hands-on" application of new technology during the learning
process. In this workbook, Mr. Nyberg applies his experience as an architect and his pragmatic
"How does it work and what does it do for me?" approach to the new EJB 2.0 specification and its
implementation in WebLogic

About the Series

Each of the books in this series is a server-specific companion to the third edition of Richard
Monson-Haefel's best-selling and award-winning Enterprise JavaBeans (O'Reilly 2001),
available at http://www.titan-books.com/ and at all major retail outlets. It guides the reader
step by step through the exercises called out in that work, explains how to build and deploy
working solutions in a particular application server, and provides useful hints, tips, and warnings.

These workbooks are published by Titan Books in the context of a friendly agreement with
O'Reilly and Associates, the publishers of Enterprise JavaBeans, to provide serious developers
with the best possible foundation for success in EJB development on their chosen platforms.

Colophon

This book is set in the legible and attractive Georgia font. Manuscripts were composed and edited
in Microsoft Word, and converted to PDF format for download and printing with Adobe Acrobat.

http://www.titan-books.com/
http://www.titan-books.com/

	About the Series
	Series Titles Available
	Table of Figures
	Preface
	
	Contents of This Book
	On-Line Resources
	Conventions Used in This Book
	Acknowledgements

	Server Installation and Configuration
	Installing WebLogic Server Software
	Installing on NT/Win2K Machines
	Installing on SunOS Machines
	Final Installation Steps

	Enabling EJB 2.0 Capability in WebLogic
	Verifying Installation using WebLogic Examples
	Reviewing the Examples Domain
	
	NT/Win2K
	SunOS

	Booting the Examples Domain
	Booting the Examples Server – NT/Win2K:
	Booting the Examples Server – SunOS:

	Opening the WebLogic Management Console
	Changing the Logging Severity Threshold
	Configuring the JDBC Connection Pools
	Configuring the JDBC pools for alternate JDBC drivers/databases:
	WebLogic’s Oracle OCI Driver
	DB/2 UDB JDBC Driver
	Sun’s JDBC-ODBC Bridge Driver
	WebLogic’s SQL*Server Driver

	Building and Deploying the EJB20 Examples
	Building the EJB 2.0 examples:

	Testing the EJB20 Examples

	Building the Workbook Database
	Option #1 – Build Empty Database, Add Tables Duri
	Creating Cloudscape Database using Cloudview
	Creating Cloudscape Database using ij Utility

	Option #2 – Build Empty Database, Create All Tabl
	Creating Workbook Tables using Cloudview
	Creating Workbook Tables using ij Utility

	Option #3 – Download Complete Cloudscape Database

	Configuring EJBBook Domain for EJB Exercises
	Creating an Empty EJBBook Domain
	Configuring EJBBook Domain
	Step 1 – Create and Configure a Server in the ejb
	Step 2 – Configure ejbbook domain root directory
	Win2K/NT
	SunOS
	Win2K/NT or SunOS

	Step 3 – Create a JDBC pool and datasource in ejb

	Configuring TitanApp Application in EJBBook Domain
	
	web.xml
	weblogic.xml
	application.xml
	simple.jsp

	Exercise Code Setup and Configuration
	
	
	common.properties – NT/Win2K
	common.properties – SunOS

	Exercises for Chapter 4
	Exercise 4.1:�A Simple Entity Bean
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the WebLogic-Specific Files/Components
	
	weblogic-ejb-jar.xml
	weblogic-cmp-rdbms-jar.xml

	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_41.java

	Examine and Run the Client JSP Pages

	Exercise 4.2:�A Simple Session Bean
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the WebLogic-Specific Files/Components
	
	weblogic-ejb-jar.xml

	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_43.java
	TravelAgentBean.java

	Examine and Run the Client JSP Pages

	Exercises for Chapter 5
	Exercise 5.1:�The Remote Component Interfaces
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	Examine and Run the Client JSP Pages

	Exercise 5.2:�The EJBObject, Handle, and Primary Key
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_53.java
	Client_54.java
	Client_55.java

	Examine and Run the Client JSP Pages

	Exercise 5.3:�The Local Component Interfaces
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	Examine and Run the Client JSP Pages

	Exercises for Chapter 6
	Exercise 6.1:�Basic Persistence in CMP 2.0
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_61.java

	Examine and Run the Client JSP Pages

	Exercise 6.2:�Dependent Value Classes in CMP 2.0
	Download and Build the Example Programs
	
	CustomerRemote.java
	CustomerBean.java

	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_62.java

	Examine and Run the Client JSP Pages

	Exercise 6.3:�A Simple Relationship in CMP 2.0
	Download and Build the Example Programs
	
	AddressBean.java
	AddressLocal.java
	AddressHomeLocal.java
	CustomerRemote.java
	CustomerBean.java

	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_63.java

	Examine and Run the Client JSP Pages

	Exercises for Chapter 7
	Exercise 7.1:�Entity Relationships in CMP 2.0: Part 1
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client JSP Pages
	
	Client_71.jsp
	Client_72.jsp
	Client_73.jsp

	Exercise 7.2:�Entity Relationships in CMP 2.0: Part 2
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Many-to-One Unidirectional (Cruise-Ship)
	One-to-Many Bidirectional (Cruise-Reservation)
	Many-to-Many Bidirectional (Customer-Reservation)
	Many-to-Many Unidirectional (Cabin-Reservation)

	Examine the WebLogic-Specific Files/Components
	Many-to-One Unidirectional (Cruise-Ship)
	One-to-Many Bidirectional (Cruise-Reservation)
	Many-to-Many Bidirectional (Customer-Reservation)
	Many-to-Many Unidirectional (Cabin-Reservation)

	Deploy the EJB Components to WebLogic
	Examine and Run the Client JSP Pages
	
	Client_75.jsp
	Client_76a.jsp
	Client_76b.jsp
	Client_77a.jsp
	Client_77b.jsp
	Client_77c.jsp
	Client_77d.jsp

	Optional Additional Tasks

	Exercise 7.3:�Cascade Deletes in CMP 2.0
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client JSP Pages

	Exercises for Chapter 8
	Exercise 8.1:�Simple EJB QL Statements
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	
	CustomerHomeLocal.java
	AddressBean.java
	AddressHomeLocal.java
	AddressBean.java
	CruiseHomeLocal.java
	CabinHomeLocal.java
	CabinHomeLocal.java
	CabinBean.java

	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client JSP Pages
	
	Client_81.jsp
	Client_82.jsp
	Client_83.jsp
	AddressBean.java
	Client_84a.jsp
	Client_84b.jsp
	Client_84c.jsp

	Exercise 8.2:�Complex EJB QL Statements
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client JSP Pages
	
	Client_85.jsp
	Client_86a.jsp
	Client_86b.jsp
	Client_87.jsp
	Client_88.jsp
	Client_89.jsp

	Exercise for Chapter 10
	Exercise 10.1:�A BMP Entity Bean
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	Examine and Run the Client JSP Pages

	Exercises for Chapter 12
	Exercise 12.1:�A Stateless Session Bean
	Download and Build the Example Programs
	
	ProcessPaymentRemote.java

	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	
	ejb-jar.xml
	weblogic-ejb-jar.xml

	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_121.java
	Client_122.java

	Examine and Run the Client JSP Pages

	Exercise 12.2:�A Stateful Session Bean
	Download and Build the Example Programs
	Create the Required Database Objects
	Examine the Standard EJB Descriptor File
	
	CustomerHomeLocal.java
	CustomerHomeRemote.java
	CustomerRemote.java
	CustomerLocal.java
	ReservationBean.java

	Examine the WebLogic-Specific Files/Components
	
	ejb-jar.xml
	weblogic-ejb-jar.xml

	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	Client_125.java
	Client_126.java
	Client_127.java

	Examine and Run the Client JSP Pages

	Exercises for Chapter 13
	Exercise 13.1:�JMS as a Resource
	Download and Build the Example Programs
	
	TravelAgentBean.java

	Configure the Required JMS Components
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	
	weblogic-ejb-jar.xml

	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	Examine and Run the Client JSP Pages

	Exercise 13.2:�The Message-Driven Bean
	Download and Build the Example Programs
	
	ReservationProcessorBean.java
	JmsClient_ReservationProducer.java

	Configure the Required JMS Components
	Examine the Standard EJB Descriptor File
	Examine the WebLogic-Specific Files/Components
	Deploy the EJB Components to WebLogic
	Examine and Run the Client Applications
	
	JmsClient_ReservationProducer.java
	JmsClient_TicketConsumer.java

	Examine and Run the Client JSP Pages
	About the Author
	About the Series
	Colophon

